File size: 5,505 Bytes
58c54d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import numpy as np
import os
import glob
from skimage.morphology import binary_dilation, disk
import argparse

import trimesh
from pathlib import Path
import subprocess

import sys
sys.path.append("../code")
import render_utils as rend_util


def cull_scan(scan, mesh_path, result_mesh_file):
    
    # load poses
    instance_dir = os.path.join('/p300/wangchy/huangbb/anti-alising-gaussian-splatting/data/DTU_dense', 'scan{0}'.format(scan))
    image_dir = '{0}/images'.format(instance_dir)
    image_paths = sorted(glob.glob(os.path.join(image_dir, "*.png")))
    n_images = len(image_paths)
    cam_file = '{0}/cameras.npz'.format(instance_dir)
    camera_dict = np.load(cam_file)
    scale_mats = [camera_dict['scale_mat_%d' % idx].astype(np.float32) for idx in range(n_images)]
    world_mats = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in range(n_images)]

    intrinsics_all = []
    pose_all = []
    for scale_mat, world_mat in zip(scale_mats, world_mats):
        P = world_mat @ scale_mat
        P = P[:3, :4]
        intrinsics, pose = rend_util.load_K_Rt_from_P(None, P)
        intrinsics_all.append(torch.from_numpy(intrinsics).float())
        pose_all.append(torch.from_numpy(pose).float())
    
    # load mask
    mask_dir = '{0}/mask'.format(instance_dir)
    mask_paths = sorted(glob.glob(os.path.join(mask_dir, "*.png")))
    masks = []
    for p in mask_paths:
        mask = cv2.imread(p)
        masks.append(mask)

    # hard-coded image shape
    W, H = 1600, 1200

    # load mesh
    mesh = trimesh.load(mesh_path)
    
    # load transformation matrix

    vertices = mesh.vertices

    # project and filter
    vertices = torch.from_numpy(vertices).cuda()
    vertices = torch.cat((vertices, torch.ones_like(vertices[:, :1])), dim=-1)
    vertices = vertices.permute(1, 0)
    vertices = vertices.float()

    sampled_masks = []
    for i in range(n_images):
        pose = pose_all[i]
        w2c = torch.inverse(pose).cuda()
        intrinsic = intrinsics_all[i].cuda()

        with torch.no_grad():
            # transform and project
            cam_points = intrinsic @ w2c @ vertices
            pix_coords = cam_points[:2, :] / (cam_points[2, :].unsqueeze(0) + 1e-6)
            pix_coords = pix_coords.permute(1, 0)
            pix_coords[..., 0] /= W - 1
            pix_coords[..., 1] /= H - 1
            pix_coords = (pix_coords - 0.5) * 2
            valid = ((pix_coords > -1. ) & (pix_coords < 1.)).all(dim=-1).float()
            
            # dialate mask similar to unisurf
            maski = masks[i][:, :, 0].astype(np.float32) / 256.
            maski = torch.from_numpy(binary_dilation(maski, disk(24))).float()[None, None].cuda()
            
            # # if scan == '83': 
            # import matplotlib.pyplot as plt
            # plt.imshow(maski.cpu().numpy()[0,0])
            # points = (cam_points[:2, :] / (cam_points[2, :].unsqueeze(0) + 1e-6)).permute(1,0)[valid==1].cpu().numpy()
            # scatters = points[np.random.permutation(len(points))[:10000]]
            # plt.scatter(scatters[:,0], scatters[:,1], color='r')
            # plt.savefig(f'test{i}')
            # plt.clf()
            # plt.close()

            sampled_mask = F.grid_sample(maski, pix_coords[None, None], mode='nearest', padding_mode='zeros', align_corners=True)[0, -1, 0]
            # print(f'culling {i}')
            sampled_mask = sampled_mask + (1. - valid)
            sampled_masks.append(sampled_mask)

    sampled_masks = torch.stack(sampled_masks, -1)
    # filter
    
    mask = (sampled_masks > 0.).all(dim=-1).cpu().numpy()
    face_mask = mask[mesh.faces].all(axis=1)

    mesh.update_vertices(mask)
    mesh.update_faces(face_mask)
    
    # with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
    #     triangle_clusters, cluster_n_triangles, cluster_area = (mesh.cluster_connected_triangles())
    # triangle_clusters = np.asarray(triangle_clusters)
    # cluster_n_triangles = np.asarray(cluster_n_triangles)
    # cluster_area = np.asarray(cluster_area)
    # largest_cluster_idx = cluster_n_triangles.argmax()
    # triangles_to_remove = (triangle_clusters != largest_cluster_idx)
    
    # transform vertices to world 
    scale_mat = scale_mats[0]
    mesh.vertices = mesh.vertices * scale_mat[0, 0] + scale_mat[:3, 3][None]
    mesh.export(result_mesh_file)
    del mesh
    

if __name__ == "__main__":

    parser = argparse.ArgumentParser(
        description='Arguments to evaluate the mesh.'
    )

    parser.add_argument('--input_mesh', type=str,  help='path to the mesh to be evaluated')
    parser.add_argument('--scan_id', type=str,  help='scan id of the input mesh')
    parser.add_argument('--output_dir', type=str, default='evaluation_results_single', help='path to the output folder')
    parser.add_argument('--DTU', type=str,  default='Offical_DTU_Dataset', help='path to the GT DTU point clouds')
    args = parser.parse_args()


    Offical_DTU_Dataset = args.DTU
    out_dir = args.output_dir
    Path(out_dir).mkdir(parents=True, exist_ok=True)

    scan = args.scan_id
    ply_file = args.input_mesh
    
    result_mesh_file = os.path.join(out_dir, "culled_mesh.ply")
    cull_scan(scan, ply_file, result_mesh_file)

    cmd = f"python eval.py --data {result_mesh_file} --scan {scan} --mode mesh --dataset_dir {Offical_DTU_Dataset} --vis_out_dir {out_dir}"
    os.system(cmd)