Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,773 Bytes
869e23f
 
 
 
 
53e2f5a
869e23f
87e545f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
869e23f
 
d41459b
869e23f
 
 
 
 
 
 
 
 
 
 
 
 
d41459b
92fa1b2
869e23f
 
 
 
 
 
 
4bfa7d0
 
869e23f
 
 
 
 
 
 
 
 
 
 
 
53e2f5a
869e23f
 
 
 
 
 
d41459b
869e23f
4bfa7d0
 
53e2f5a
869e23f
 
 
 
 
53e2f5a
869e23f
 
 
 
 
 
 
 
 
 
 
 
d41459b
ce933aa
d41459b
 
 
 
 
 
4bfa7d0
d41459b
ce933aa
 
d41459b
ce933aa
 
 
1ad6f88
ce933aa
4bfa7d0
 
 
ce933aa
 
 
 
 
869e23f
 
1ad6f88
ce933aa
869e23f
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: unknown
size_categories: 1K<n<10K
task_categories:
- image-classification
paperswithcode_id: isun
pretty_name: iSUN
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: image
    dtype: image
  splits:
  - name: train
    num_bytes: 24514257.375
    num_examples: 8925
  download_size: 0
  dataset_size: 24514257.375
---

# Dataset Card for iSUN for OOD Detection

<!-- Provide a quick summary of the dataset. -->



## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->



- **Original Dataset Authors**: Junting Pan, Xavier Giró-i-Nieto
- **OOD Split Authors:** Shiyu Liang, Yixuan Li, R. Srikant
- **Shared by:** Eduardo Dadalto
- **License:** unknown

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Original Dataset Paper:** http://arxiv.org/abs/1507.01422v1
- **First OOD Application Paper:** http://arxiv.org/abs/1706.02690v5


### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

This dataset is intended to be used as an ouf-of-distribution dataset for image classification benchmarks.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

This dataset is not annotated.


### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The goal in curating and sharing this dataset to the HuggingFace Hub is to accelerate research and promote reproducibility in generalized Out-of-Distribution (OOD) detection.

Check the python library [detectors](https://github.com/edadaltocg/detectors) if you are interested in OOD detection.

### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

Please check original paper for details on the dataset.

### Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Please check original paper for details on the dataset.

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bibtex
@software{detectors2023,
author = {Eduardo Dadalto},
title = {Detectors: a Python Library for Generalized Out-Of-Distribution Detection},
url = {https://github.com/edadaltocg/detectors},
doi = {https://doi.org/10.5281/zenodo.7883596},
month = {5},
year = {2023}
}

@article{1706.02690v5,
author        = {Shiyu Liang and Yixuan Li and R. Srikant},
title         = {Enhancing The Reliability of Out-of-distribution Image Detection in
  Neural Networks},
year          = {2017},
month         = {6},
note          = {ICLR 2018},
archiveprefix = {arXiv},
url           = {http://arxiv.org/abs/1706.02690v5}
}

@article{1507.01422v1,
author        = {Junting Pan and Xavier Giró-i-Nieto},
title         = {End-to-end Convolutional Network for Saliency Prediction},
year          = {2015},
month         = {7},
note          = {Winner of the saliency prediction challenge in the Large-scale Scene
  Understanding (LSUN) Challenge in the associated workshop of the IEEE
  Conference on Computer Vision and Pattern Recognition (CVPR) 2015},
archiveprefix = {arXiv},
url           = {http://arxiv.org/abs/1507.01422v1}
}
```

## Dataset Card Authors

Eduardo Dadalto

## Dataset Card Contact

https://huggingface.co/edadaltocg