Commit
·
c5e9962
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +166 -0
- bprec.py +201 -0
- dataset_infos.json +1 -0
- dummy/all/1.1.0/dummy_data.zip +3 -0
- dummy/banking/1.1.0/dummy_data.zip +3 -0
- dummy/cosmetics/1.1.0/dummy_data.zip +3 -0
- dummy/electro/1.1.0/dummy_data.zip +3 -0
- dummy/tele/1.1.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- expert-generated
|
6 |
+
languages:
|
7 |
+
- pl
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- text-retrieval
|
18 |
+
task_ids:
|
19 |
+
- entity-linking-retrieval
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for [Dataset Name]
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-instances)
|
32 |
+
- [Data Splits](#data-instances)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
40 |
+
- [Discussion of Biases](#discussion-of-biases)
|
41 |
+
- [Other Known Limitations](#other-known-limitations)
|
42 |
+
- [Additional Information](#additional-information)
|
43 |
+
- [Dataset Curators](#dataset-curators)
|
44 |
+
- [Licensing Information](#licensing-information)
|
45 |
+
- [Citation Information](#citation-information)
|
46 |
+
|
47 |
+
## Dataset Description
|
48 |
+
|
49 |
+
- **Homepage:** [bprec homepage](https://clarin-pl.eu/dspace/handle/11321/736)
|
50 |
+
- **Repository:** [bprec repository](https://gitlab.clarin-pl.eu/team-semantics/semrel-extraction)
|
51 |
+
- **Paper:** [bprec paper](https://www.aclweb.org/anthology/2020.lrec-1.233.pdf)
|
52 |
+
- **Leaderboard:**
|
53 |
+
- **Point of Contact:**
|
54 |
+
|
55 |
+
### Dataset Summary
|
56 |
+
|
57 |
+
Brand-Product Relation Extraction Corpora in Polish
|
58 |
+
|
59 |
+
### Supported Tasks and Leaderboards
|
60 |
+
|
61 |
+
NER, Entity linking
|
62 |
+
|
63 |
+
### Languages
|
64 |
+
|
65 |
+
Polish
|
66 |
+
|
67 |
+
## Dataset Structure
|
68 |
+
|
69 |
+
### Data Instances
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
### Data Fields
|
74 |
+
|
75 |
+
- id: int identifier of a text
|
76 |
+
- text: string text, for example a consumer comment on the social media
|
77 |
+
- ner: extracted entities and their relationship
|
78 |
+
- source and target: a pair of entities identified in the text
|
79 |
+
- from: int value representing starting character of the entity
|
80 |
+
- text: string value with the entity text
|
81 |
+
- to: int value representing end character of the entity
|
82 |
+
- type: one of pre-identified entity types:
|
83 |
+
- PRODUCT_NAME
|
84 |
+
- PRODUCT_NAME_IMP
|
85 |
+
- PRODUCT_NO_BRAND
|
86 |
+
- BRAND_NAME
|
87 |
+
- BRAND_NAME_IMP
|
88 |
+
- VERSION
|
89 |
+
- PRODUCT_ADJ
|
90 |
+
- BRAND_ADJ
|
91 |
+
- LOCATION
|
92 |
+
- LOCATION_IMP
|
93 |
+
|
94 |
+
|
95 |
+
### Data Splits
|
96 |
+
|
97 |
+
No train/validation/test split provided. Current dataset configurations point to 4 domain categories for the texts:
|
98 |
+
- tele
|
99 |
+
- electro
|
100 |
+
- cosmetics
|
101 |
+
- banking
|
102 |
+
|
103 |
+
## Dataset Creation
|
104 |
+
|
105 |
+
### Curation Rationale
|
106 |
+
|
107 |
+
[More Information Needed]
|
108 |
+
|
109 |
+
### Source Data
|
110 |
+
|
111 |
+
#### Initial Data Collection and Normalization
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Who are the source language producers?
|
116 |
+
|
117 |
+
[More Information Needed]
|
118 |
+
|
119 |
+
### Annotations
|
120 |
+
|
121 |
+
#### Annotation process
|
122 |
+
|
123 |
+
[More Information Needed]
|
124 |
+
|
125 |
+
#### Who are the annotators?
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
### Personal and Sensitive Information
|
130 |
+
|
131 |
+
[More Information Needed]
|
132 |
+
|
133 |
+
## Considerations for Using the Data
|
134 |
+
|
135 |
+
### Social Impact of Dataset
|
136 |
+
|
137 |
+
[More Information Needed]
|
138 |
+
|
139 |
+
### Discussion of Biases
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
### Other Known Limitations
|
144 |
+
|
145 |
+
[More Information Needed]
|
146 |
+
|
147 |
+
## Additional Information
|
148 |
+
|
149 |
+
### Dataset Curators
|
150 |
+
|
151 |
+
[More Information Needed]
|
152 |
+
|
153 |
+
### Licensing Information
|
154 |
+
|
155 |
+
[More Information Needed]
|
156 |
+
|
157 |
+
### Citation Information
|
158 |
+
```
|
159 |
+
@inproceedings{inproceedings,
|
160 |
+
author = {Janz, Arkadiusz and Kopociński, Łukasz and Piasecki, Maciej and Pluwak, Agnieszka},
|
161 |
+
year = {2020},
|
162 |
+
month = {05},
|
163 |
+
pages = {},
|
164 |
+
title = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}
|
165 |
+
}
|
166 |
+
```
|
bprec.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Brand-Product Relation Extraction Corpora"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
# DONE: Add BibTeX citation
|
25 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{inproceedings,
|
28 |
+
author = {Janz, Arkadiusz and Kopociński, Łukasz and Piasecki, Maciej and Pluwak, Agnieszka},
|
29 |
+
year = {2020},
|
30 |
+
month = {05},
|
31 |
+
pages = {},
|
32 |
+
title = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
# DONE: Add description of the dataset here
|
37 |
+
# You can copy an official description
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
Dataset consisting of Polish language texts annotated to recognize brand-product relations.
|
40 |
+
"""
|
41 |
+
|
42 |
+
# DONE: Add a link to an official homepage for the dataset here
|
43 |
+
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/736"
|
44 |
+
|
45 |
+
# TODO: Add the licence for the dataset here if you can find it
|
46 |
+
_LICENSE = ""
|
47 |
+
|
48 |
+
# TODO: Add link to the official dataset URLs here
|
49 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
50 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
51 |
+
_URLs = {
|
52 |
+
"tele": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_tele_export.json",
|
53 |
+
"electro": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_electro_export.json",
|
54 |
+
"cosmetics": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_cosmetics_export.json",
|
55 |
+
"banking": "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_banking_export.json",
|
56 |
+
}
|
57 |
+
|
58 |
+
_CATEGORIES = {
|
59 |
+
"tele": "telecommunications",
|
60 |
+
"electro": "electronics",
|
61 |
+
"cosmetics": "cosmetics",
|
62 |
+
"banking": "banking",
|
63 |
+
}
|
64 |
+
_ALL_CATEGORIES = "all"
|
65 |
+
_VERSION = "1.1.0"
|
66 |
+
|
67 |
+
|
68 |
+
class BprecConfig(datasets.BuilderConfig):
|
69 |
+
"""BuilderConfig for BprecConfig."""
|
70 |
+
|
71 |
+
def __init__(self, categories=None, **kwargs):
|
72 |
+
super(BprecConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
|
73 |
+
self.categories = categories
|
74 |
+
|
75 |
+
|
76 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
77 |
+
class Bprec(datasets.GeneratorBasedBuilder):
|
78 |
+
"""Brand-Product Relation Extraction Corpora in Polish"""
|
79 |
+
|
80 |
+
BUILDER_CONFIGS = [
|
81 |
+
BprecConfig(
|
82 |
+
name=_ALL_CATEGORIES,
|
83 |
+
categories=_CATEGORIES,
|
84 |
+
description="A collection of Polish language texts annotated to recognize brand-product relations",
|
85 |
+
)
|
86 |
+
] + [
|
87 |
+
BprecConfig(
|
88 |
+
name=cat,
|
89 |
+
categories=[cat],
|
90 |
+
description=f"{_CATEGORIES[cat]} examples from a collection of Polish language texts annotated to recognize brand-product relations",
|
91 |
+
)
|
92 |
+
for cat in _CATEGORIES
|
93 |
+
]
|
94 |
+
BUILDER_CONFIG_CLASS = BprecConfig
|
95 |
+
DEFAULT_CONFIG_NAME = _ALL_CATEGORIES
|
96 |
+
|
97 |
+
def _info(self):
|
98 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
99 |
+
features = datasets.Features(
|
100 |
+
{
|
101 |
+
"id": datasets.Value("int32"),
|
102 |
+
"category": datasets.Value("string"),
|
103 |
+
"text": datasets.Value("string"),
|
104 |
+
"ner": datasets.features.Sequence(
|
105 |
+
{
|
106 |
+
"source": {
|
107 |
+
"from": datasets.Value("int32"),
|
108 |
+
"text": datasets.Value("string"),
|
109 |
+
"to": datasets.Value("int32"),
|
110 |
+
"type": datasets.features.ClassLabel(
|
111 |
+
names=[
|
112 |
+
"PRODUCT_NAME",
|
113 |
+
"PRODUCT_NAME_IMP",
|
114 |
+
"PRODUCT_NO_BRAND",
|
115 |
+
"BRAND_NAME",
|
116 |
+
"BRAND_NAME_IMP",
|
117 |
+
"VERSION",
|
118 |
+
"PRODUCT_ADJ",
|
119 |
+
"BRAND_ADJ",
|
120 |
+
"LOCATION",
|
121 |
+
"LOCATION_IMP",
|
122 |
+
]
|
123 |
+
),
|
124 |
+
},
|
125 |
+
"target": {
|
126 |
+
"from": datasets.Value("int32"),
|
127 |
+
"text": datasets.Value("string"),
|
128 |
+
"to": datasets.Value("int32"),
|
129 |
+
"type": datasets.features.ClassLabel(
|
130 |
+
names=[
|
131 |
+
"PRODUCT_NAME",
|
132 |
+
"PRODUCT_NAME_IMP",
|
133 |
+
"PRODUCT_NO_BRAND",
|
134 |
+
"BRAND_NAME",
|
135 |
+
"BRAND_NAME_IMP",
|
136 |
+
"VERSION",
|
137 |
+
"PRODUCT_ADJ",
|
138 |
+
"BRAND_ADJ",
|
139 |
+
"LOCATION",
|
140 |
+
"LOCATION_IMP",
|
141 |
+
]
|
142 |
+
),
|
143 |
+
},
|
144 |
+
}
|
145 |
+
),
|
146 |
+
}
|
147 |
+
)
|
148 |
+
return datasets.DatasetInfo(
|
149 |
+
# This is the description that will appear on the datasets page.
|
150 |
+
description=_DESCRIPTION,
|
151 |
+
# This defines the different columns of the dataset and their types
|
152 |
+
features=features, # Here we define them above because they are different between the two configurations
|
153 |
+
# If there's a common (input, target) tuple from the features,
|
154 |
+
# specify them here. They'll be used if as_supervised=True in
|
155 |
+
# builder.as_dataset.
|
156 |
+
supervised_keys=None,
|
157 |
+
# Homepage of the dataset for documentation
|
158 |
+
homepage=_HOMEPAGE,
|
159 |
+
# License for the dataset if available
|
160 |
+
license=_LICENSE,
|
161 |
+
# Citation for the dataset
|
162 |
+
citation=_CITATION,
|
163 |
+
)
|
164 |
+
|
165 |
+
def _split_generators(self, dl_manager):
|
166 |
+
"""Returns SplitGenerators."""
|
167 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
168 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
169 |
+
|
170 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
171 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
172 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
173 |
+
_my_urls = [_URLs[cat] for cat in self.config.categories]
|
174 |
+
|
175 |
+
downloaded_files = dl_manager.download_and_extract(_my_urls)
|
176 |
+
|
177 |
+
return [
|
178 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filedirs": downloaded_files}),
|
179 |
+
]
|
180 |
+
|
181 |
+
def _generate_examples(self, filedirs, split="tele"):
|
182 |
+
""" Yields examples. """
|
183 |
+
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
|
184 |
+
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
185 |
+
# The key is not important, it's more here for legacy reason (legacy from tfds)
|
186 |
+
cats = [cat for cat in self.config.categories]
|
187 |
+
for cat, filepath in zip(cats, filedirs):
|
188 |
+
# print(cat, filepath)
|
189 |
+
with open(filepath, "r", encoding="utf-8") as f:
|
190 |
+
data = json.load(f)
|
191 |
+
for key in data.keys():
|
192 |
+
example = data[key]
|
193 |
+
id_ = example.get("id")
|
194 |
+
text = example.get("text")
|
195 |
+
ner = example.get("ner")
|
196 |
+
yield id_, {
|
197 |
+
"id": id_,
|
198 |
+
"category": cat,
|
199 |
+
"text": text,
|
200 |
+
"ner": ner,
|
201 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "Dataset consisting of Polish language texts annotated to recognize brand-product relations.\n", "citation": "@inproceedings{inproceedings,\nauthor = {Janz, Arkadiusz and Kopoci\u0144ski, \u0141ukasz and Piasecki, Maciej and Pluwak, Agnieszka},\nyear = {2020},\nmonth = {05},\npages = {},\ntitle = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/736", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "ner": {"feature": {"source": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "target": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "bprec", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"tele": {"name": "tele", "num_bytes": 2739015, "num_examples": 2391, "dataset_name": "bprec"}, "electro": {"name": "electro", "num_bytes": 125999, "num_examples": 382, "dataset_name": "bprec"}, "cosmetics": {"name": "cosmetics", "num_bytes": 1565263, "num_examples": 2384, "dataset_name": "bprec"}, "banking": {"name": "banking", "num_bytes": 446944, "num_examples": 561, "dataset_name": "bprec"}}, "download_checksums": {"https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_tele_export.json": {"num_bytes": 4569708, "checksum": "cfe52cf903eb6e385e2bf2d81b5773dffb63c9f94c06361151d413ed99fee128"}, "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_electro_export.json": {"num_bytes": 269917, "checksum": "43ea9603ba674f9d297d858522f9383c4ae23d7ec73a1738dd02233dba8a15bd"}, "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_cosmetics_export.json": {"num_bytes": 2417388, "checksum": "100555b1a5dc2769f4b002d7205c9c438e3f196fe6fc202a934aec9e8041563c"}, "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_banking_export.json": {"num_bytes": 749154, "checksum": "45bf126f3fa4f7549d371eebaea825da0c02683e7fdde41fbaff64f0e1809e16"}}, "download_size": 8006167, "post_processing_size": null, "dataset_size": 4877221, "size_in_bytes": 12883388}, "all": {"description": "Dataset consisting of Polish language texts annotated to recognize brand-product relations.\n", "citation": "@inproceedings{inproceedings,\nauthor = {Janz, Arkadiusz and Kopoci\u0144ski, \u0141ukasz and Piasecki, Maciej and Pluwak, Agnieszka},\nyear = {2020},\nmonth = {05},\npages = {},\ntitle = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/736", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "category": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "ner": {"feature": {"source": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "target": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "bprec", "config_name": "all", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4937658, "num_examples": 5718, "dataset_name": "bprec"}}, "download_checksums": {"https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_tele_export.json": {"num_bytes": 4569708, "checksum": "cfe52cf903eb6e385e2bf2d81b5773dffb63c9f94c06361151d413ed99fee128"}, "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_electro_export.json": {"num_bytes": 269917, "checksum": "43ea9603ba674f9d297d858522f9383c4ae23d7ec73a1738dd02233dba8a15bd"}, "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_cosmetics_export.json": {"num_bytes": 2417388, "checksum": "100555b1a5dc2769f4b002d7205c9c438e3f196fe6fc202a934aec9e8041563c"}, "https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_banking_export.json": {"num_bytes": 749154, "checksum": "45bf126f3fa4f7549d371eebaea825da0c02683e7fdde41fbaff64f0e1809e16"}}, "download_size": 8006167, "post_processing_size": null, "dataset_size": 4937658, "size_in_bytes": 12943825}, "tele": {"description": "Dataset consisting of Polish language texts annotated to recognize brand-product relations.\n", "citation": "@inproceedings{inproceedings,\nauthor = {Janz, Arkadiusz and Kopoci\u0144ski, \u0141ukasz and Piasecki, Maciej and Pluwak, Agnieszka},\nyear = {2020},\nmonth = {05},\npages = {},\ntitle = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/736", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "category": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "ner": {"feature": {"source": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "target": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "bprec", "config_name": "tele", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2758147, "num_examples": 2391, "dataset_name": "bprec"}}, "download_checksums": {"https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_tele_export.json": {"num_bytes": 4569708, "checksum": "cfe52cf903eb6e385e2bf2d81b5773dffb63c9f94c06361151d413ed99fee128"}}, "download_size": 4569708, "post_processing_size": null, "dataset_size": 2758147, "size_in_bytes": 7327855}, "electro": {"description": "Dataset consisting of Polish language texts annotated to recognize brand-product relations.\n", "citation": "@inproceedings{inproceedings,\nauthor = {Janz, Arkadiusz and Kopoci\u0144ski, \u0141ukasz and Piasecki, Maciej and Pluwak, Agnieszka},\nyear = {2020},\nmonth = {05},\npages = {},\ntitle = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/736", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "category": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "ner": {"feature": {"source": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "target": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "bprec", "config_name": "electro", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 130205, "num_examples": 382, "dataset_name": "bprec"}}, "download_checksums": {"https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_electro_export.json": {"num_bytes": 269917, "checksum": "43ea9603ba674f9d297d858522f9383c4ae23d7ec73a1738dd02233dba8a15bd"}}, "download_size": 269917, "post_processing_size": null, "dataset_size": 130205, "size_in_bytes": 400122}, "cosmetics": {"description": "Dataset consisting of Polish language texts annotated to recognize brand-product relations.\n", "citation": "@inproceedings{inproceedings,\nauthor = {Janz, Arkadiusz and Kopoci\u0144ski, \u0141ukasz and Piasecki, Maciej and Pluwak, Agnieszka},\nyear = {2020},\nmonth = {05},\npages = {},\ntitle = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/736", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "category": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "ner": {"feature": {"source": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "target": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "bprec", "config_name": "cosmetics", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1596259, "num_examples": 2384, "dataset_name": "bprec"}}, "download_checksums": {"https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_cosmetics_export.json": {"num_bytes": 2417388, "checksum": "100555b1a5dc2769f4b002d7205c9c438e3f196fe6fc202a934aec9e8041563c"}}, "download_size": 2417388, "post_processing_size": null, "dataset_size": 1596259, "size_in_bytes": 4013647}, "banking": {"description": "Dataset consisting of Polish language texts annotated to recognize brand-product relations.\n", "citation": "@inproceedings{inproceedings,\nauthor = {Janz, Arkadiusz and Kopoci\u0144ski, \u0141ukasz and Piasecki, Maciej and Pluwak, Agnieszka},\nyear = {2020},\nmonth = {05},\npages = {},\ntitle = {Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations}\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/736", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "category": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "ner": {"feature": {"source": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "target": {"from": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "to": {"dtype": "int32", "id": null, "_type": "Value"}, "type": {"num_classes": 10, "names": ["PRODUCT_NAME", "PRODUCT_NAME_IMP", "PRODUCT_NO_BRAND", "BRAND_NAME", "BRAND_NAME_IMP", "VERSION", "PRODUCT_ADJ", "BRAND_ADJ", "LOCATION", "LOCATION_IMP"], "names_file": null, "id": null, "_type": "ClassLabel"}}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "bprec", "config_name": "banking", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 453119, "num_examples": 561, "dataset_name": "bprec"}}, "download_checksums": {"https://minio.clarin-pl.eu/semrel/corpora/ner_export_json/ner_banking_export.json": {"num_bytes": 749154, "checksum": "45bf126f3fa4f7549d371eebaea825da0c02683e7fdde41fbaff64f0e1809e16"}}, "download_size": 749154, "post_processing_size": null, "dataset_size": 453119, "size_in_bytes": 1202273}}
|
dummy/all/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db0c1ecd5f7629e076fe1d4ca0943e6c57427a958ba4cee2b6935d2b5eec4ae2
|
3 |
+
size 6922
|
dummy/banking/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a62e751b40f72575e0a1f0f9ec031557581d2e64ff23588dc476a545491419a
|
3 |
+
size 2038
|
dummy/cosmetics/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6debd545e72761d73b7cafdb856650e9d36e3a62907e8f8824341f9f5fadf1ae
|
3 |
+
size 1959
|
dummy/electro/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d426a7cd4712ef53da4212667eda305e85ddd73cb90d936681c1a9c651a002c8
|
3 |
+
size 783
|
dummy/tele/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e771a4a594be2ad4e9b293dd75b493a77a8af5a7433e73d0f4cc1b9be7729cb4
|
3 |
+
size 2502
|