--- license: cc-by-nc-nd-4.0 task_categories: - audio-classification language: - zh - en tags: - music - art pretty_name: Erhu Playing Technique Dataset size_categories: - 1Kdefault subset of the current integrated version dataset based on its 11 classification data and optimized the names of the 11 categories. The data structure can be seen in the [viewer](https://www.modelscope.cn/datasets/ccmusic-database/erhu_playing_tech/dataPeview). Although the original dataset has been cited in some articles, the experiments in those articles lack reproducibility. In order to demonstrate the effectiveness of the default subset, we further processed the data and constructed the [eval subset](#eval-subset) to supplement the evaluation of this integrated version dataset. The results of the evaluation can be viewed in [[2]](https://huggingface.co/ccmusic-database/erhu_playing_tech). In addition, the labels of categories 4 and 7 in the original dataset were not discarded. Instead, they were separately constructed into [4_class subset](#4-class-subset) and [7_class subset](#7-class-subset). However, these two subsets have not been evaluated and therefore are not reflected in our paper. ## Statistics | ![](https://www.modelscope.cn/datasets/ccmusic-database/erhu_playing_tech/resolve/master/data/erhu_pie.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/erhu_playing_tech/resolve/master/data/erhu.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/erhu_playing_tech/resolve/master/data/erhu_bar.jpg) | ![](https://www.modelscope.cn/datasets/ccmusic-database/erhu_playing_tech/resolve/master/data/erhu.png) | | :---------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: | | **Fig. 1** | **Fig. 2** | **Fig. 3** | **Fig. 4** | To begin with, **Fig. 1** presents the number of data entries per label. The Trill label has the highest data volume, with 249 instances, which accounts for 19.9% of the total dataset. Conversely, the Harmonic label has the least amount of data, with only 30 instances, representing a meager 2.4% of the total. Turning to the audio duration per category, as illustrated in **Fig. 2**, the audio data associated with the Trill label has the longest cumulative duration, amounting to 4.88 minutes. In contrast, the Percussive label has the shortest audio duration, clocking in at 0.75 minutes. These disparities clearly indicate a class imbalance problem within the dataset. Finally, as shown in **Fig. 3**, we count the frequency of audio occurrences at 550-ms intervals. The quantity of data decreases as the duration lengthens. The most populated duration range is 90-640 ms, with 422 audio clips. The least populated range is 3390-3940 ms, which contains only 12 clips. **Fig. 4** is the statistical charts for the 11_class (Default), 7_class, and 4_class subsets. ### Totals | Subset | Total count | Total duration(s) | | :-------------------------: | :---------: | :------------------: | | Default / 11_classes / Eval | `1253` | `1548.3557823129247` | | 7_classes / 4_classes | `635` | `719.8175736961448` | ### Range (Default subset) | Statistical items | Values | | :--------------------------------------------: | :------------------: | | Mean duration(ms) | `1235.7189004891661` | | Min duration(ms) | `91.7687074829932` | | Max duration(ms) | `4468.934240362812` | | Classes in the longest audio duartion interval | `Vibrato, Detache` | ## Dataset Structure ### Default Subset Structure
audio mel label
.wav, 44100Hz .jpg, 44100Hz 4/7/11-class
### Eval Subset Structure
mel cqt chroma label
.jpg, 44100Hz .jpg, 44100Hz .jpg, 44100Hz 11-class
### Data Instances .zip(.wav, .jpg) ### Data Fields ```txt + detache 分弓 (72) + forte (8) + medium (8) + piano (56) + diangong 垫弓 (28) + harmonic 泛音 (18) + natural 自然泛音 (6) + artificial 人工泛音 (12) + legato&slide&glissando 连弓&滑音&大滑音 (114) + glissando_down 大滑音 下行 (4) + glissando_up 大滑音 上行 (4) + huihuayin_down 下回滑音 (18) + huihuayin_long_down 后下回滑音 (12) + legato&slide_up 向上连弓 包含滑音 (24) + forte (8) + medium (8) + piano (8) + slide_dianzhi 垫指滑音 (4) + slide_down 向下滑音 (16) + slide_legato 连线滑音 (16) + slide_up 向上滑音 (16) + percussive 打击类音效 (21) + dajigong 大击弓 (11) + horse 马嘶 (2) + stick 敲击弓 (8) + pizzicato 拨弦 (96) + forte (30) + medium (29) + piano (30) + left 左手勾弦 (6) + ricochet 抛弓 (36) + staccato 顿弓 (141) + forte (47) + medium (46) + piano (48) + tremolo 颤弓 (144) + forte (48) + medium (48) + piano (48) + trill 颤音 (202) + long 长颤音 (141) + forte (46) + medium (47) + piano (48) + short 短颤音 (61) + down 下颤音 (30) + up 上颤音 (31) + vibrato 揉弦 (56) + late (13) + press 压揉 (6) + roll 滚揉 (28) + slide 滑揉 (9) ``` ### Data Splits train, validation, test ## Dataset Description ### Dataset Summary The label system is hierarchical and contains three levels in the raw dataset. The first level consists of four categories: _trill, staccato, slide_, and _others_; the second level comprises seven categories: _trill\short\up, trill\long, staccato, slide up, slide\legato, slide\down_, and _others_; the third level consists of 11 categories, representing the 11 playing techniques described earlier. Although it also employs a three-level label system, the higher-level labels do not exhibit complete downward compatibility with the lower-level labels. Therefore, we cannot merge these three-level labels into the same split but must treat them as three separate subsets. ### Supported Tasks and Leaderboards Erhu Playing Technique Classification ### Languages Chinese, English ## Usage ### Eval Subset ```python from datasets import load_dataset dataset = load_dataset("ccmusic-database/erhu_playing_tech", name="eval") for item in ds["train"]: print(item) for item in ds["validation"]: print(item) for item in ds["test"]: print(item) ``` ### 4-class Subset ```python from datasets import load_dataset dataset = load_dataset("ccmusic-database/erhu_playing_tech", name="4_classes") for item in ds["train"]: print(item) for item in ds["validation"]: print(item) for item in ds["test"]: print(item) ``` ### 7-class Subset ```python from datasets import load_dataset ds = load_dataset("ccmusic-database/erhu_playing_tech", name="7_classes") for item in ds["train"]: print(item) for item in ds["validation"]: print(item) for item in ds["test"]: print(item) ``` ### 11-class Subset ```python from datasets import load_dataset # default subset ds = load_dataset("ccmusic-database/erhu_playing_tech", name="11_classes") for item in ds["train"]: print(item) for item in ds["validation"]: print(item) for item in ds["test"]: print(item) ``` ## Maintenance ```bash git clone git@hf.co:datasets/ccmusic-database/erhu_playing_tech cd erhu_playing_tech ``` ## Dataset Creation ### Curation Rationale Lack of a dataset for Erhu playing tech ### Source Data #### Initial Data Collection and Normalization Zhaorui Liu, Monan Zhou #### Who are the source language producers? Students from CCMUSIC ### Annotations #### Annotation process This dataset is an audio dataset containing 927 audio clips recorded by the China Conservatory of Music, each with a performance technique of erhu. #### Who are the annotators? Students from CCMUSIC ## Considerations for Using the Data ### Social Impact of Dataset Advancing the Digitization Process of Traditional Chinese Instruments ### Discussion of Biases Only for Erhu ### Other Known Limitations Not Specific Enough in Categorization ## Additional Information ### Dataset Curators Zijin Li ### Evaluation [1] [Wang, Zehao et al. “Musical Instrument Playing Technique Detection Based on FCN: Using Chinese Bowed-Stringed Instrument as an Example.” ArXiv abs/1910.09021 (2019): n. pag.](https://arxiv.org/pdf/1910.09021.pdf)
[2] ### Citation Information ```bibtex @dataset{zhaorui_liu_2021_5676893, author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han}, title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research}, month = {mar}, year = {2024}, publisher = {HuggingFace}, version = {1.2}, url = {https://huggingface.co/ccmusic-database} } ``` ### Contributions Provide a dataset for Erhu playing tech