bcai001 commited on
Commit
9ccceb0
·
verified ·
1 Parent(s): 7ac5e72

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ ---
8
+
9
+ ```
10
+ import pandas as pd
11
+ from datasets import load_dataset
12
+
13
+ dataset_name_list = [
14
+ "mteb/sts12-sts",
15
+ "mteb/sts13-sts",
16
+ "mteb/sts14-sts",
17
+ "mteb/sts15-sts",
18
+ "mteb/sts16-sts",
19
+ "mteb/stsbenchmark-sts",
20
+ "mteb/sickr-sts",
21
+ ]
22
+ dataset_dict = { _[5:-4]:load_dataset(_) for _ in dataset_name_list}
23
+
24
+
25
+ df_list = []
26
+ for dataset_name, datasetDict in dataset_dict.items():
27
+ for split_name, dataset in datasetDict.items():
28
+ df = pd.DataFrame(dataset)
29
+ df = df[['sentence1', 'sentence2', 'score']]
30
+ df['dataset'] = dataset_name
31
+ df['split'] = split_name
32
+
33
+ df = df[['dataset', 'split', 'sentence1', 'sentence2', 'score']]
34
+
35
+ df_list.append(df)
36
+ df = pd.concat(df_list, axis=0)
37
+
38
+
39
+ df['text_sim'] = df.apply(lambda row :int(text_sim(row['sentence1'].lower(), row['sentence2'].lower()) * 100 + 0.5) / 100, axis=1)
40
+ df['fuzz_sim'] = df.apply(lambda row :fuzz.ratio(row['sentence1'].lower(), row['sentence2'].lower()) / 100, axis=1)
41
+ df['scaled_score'] = df.apply(lambda row : row['score'] / 5, axis=1)
42
+ ```