# OpenMM-Medical ## Introduction OpenMM-Medical is a comprehensive medical evaluation dataset, which is an integration of existing datasets. OpenMM-Medical spans multiple domains, including Magnetic Resonance Imaging (MRI), CT scans, X-rays, microscopy images, endoscopy, fundus imaging, and dermoscopy. Components | Content | Type | Number | Metrics | :----: | :----: |:----: | :----: |:----: | ACRIMA | Fundus Photography | Multiple Choice Question Answering | 159 | Acc Adam Challenge | Endoscopy | Multiple Choice Question Answering | 87 | Acc ALL Challenge | Microscopy Images | Multiple Choice Question Answering | 342 | Acc BioMediTech | Microscopy Images | Multiple Choice Question Answering | 511 | Acc Blood Cell | Microscopy Images | Multiple Choice Question Answering | 1175 | Acc BreakHis | Magnetic Resonance Imaging | Multiple Choice Question Answering | 735 | Acc Chest CT Scan | CT Imaging | Multiple Choice Question Answering | 871 | Acc Chest X-Ray PA | X-Ray | Multiple Choice Question Answering | 850 | Acc CoronaHack | X-Ray | Multiple Choice Question Answering | 684 | Acc Covid CT | CT Imaging | Multiple Choice Question Answering | 199 | Acc Covid-19 tianchi | X-Ray | Multiple Choice Question Answering | 96 | Acc Covid19 heywhale | X-Ray | Multiple Choice Question Answering | 690 | Acc COVIDx CXR-4 | X-Ray | Multiple Choice Question Answering | 485 | Acc CRC100k | Magnetic Resonance Imaging | Multiple Choice Question Answering | 1322 | Acc DeepDRiD | Fundus Photography | Multiple Choice Question Answering | 131 | Acc Diabetic Retinopathy | Fundus Photography | Multiple Choice Question Answering | 2051 | Acc DRIMDB | Fundus Photography | Multiple Choice Question Answering | 132 | Acc Fitzpatrick 17k | Dermoscopy | Multiple Choice Question Answering | 1552 | Acc HuSHeM | Microscopy Images | Multiple Choice Question Answering | 89 | Acc ISBI2016 | Dermoscopy | Multiple Choice Question Answering | 681 | Acc ISIC2018 | Dermoscopy | Multiple Choice Question Answering | 272 | Acc ISIC2019 | Dermoscopy | Multiple Choice Question Answering | 1952 | Acc ISIC2020 | Dermoscopy | Multiple Choice Question Answering | 1580 | Acc JSIEC | Fundus Photography | Multiple Choice Question Answering | 220 | Acc Knee Osteoarthritis | X-Ray | Multiple Choice Question Answering | 518 | Acc MAlig Lymph | Magnetic Resonance Imaging | Multiple Choice Question Answering | 149 | Acc MHSMA | Microscopy Images | Multiple Choice Question Answering | 1282 | Acc MIAS | X-Ray | Multiple Choice Question Answering | 142 | Acc Monkeypox Skin Image 2022 | Dermoscopy | Multiple Choice Question Answering | 163 | Acc Mura | X-Ray | Multiple Choice Question Answering | 1464 | Acc NLM- Malaria Data | Magnetic Resonance Imaging | Multiple Choice Question Answering | 75 | Acc OCT & X-Ray 2017 | X-Ray, Optical Coherence Tomography | Multiple Choice Question Answering | 1301 | Acc OLIVES | Fundus Photography | Multiple Choice Question Answering | 593 | Acc PAD-UFES-20 | Dermoscopy | Multiple Choice Question Answering | 479 | Acc PALM2019 | Fundus Photography | Multiple Choice Question Answering | 510 | Acc Pulmonary Chest MC | X-Ray | Multiple Choice Question Answering | 38 | Acc Pulmonary Chest Shenzhen | X-Ray | Multiple Choice Question Answering | 296 | Acc RadImageNet | CT; Magnetic Resonance Imaging; Ultrasound | Multiple Choice Question Answering | 56697 | Acc Retinal OCT-C8 | Optical Coherence Tomography | Multiple Choice Question Answering | 4016 | Acc RUS CHN | X-Ray | Multiple Choice Question Answering | 1982 | Acc SARS-CoV-2 CT-scan | CT | Multiple Choice Question Answering | 910 | Acc Yangxi | Fundus Photography | Multiple Choice Question Answering | 1515 | Acc ## Usage The following steps detail how to use [**Baichuan-Omni-1.5**](https://github.com/baichuan-inc/Baichuan-Omni-1.5) with OpenMM-Medical for evaluation using [**VLMEvalKit**](https://github.com/open-compass/VLMEvalKit): --- ### **1. Add `baichuan.py` in `VLMEvalKit/vlmeval/vlm`** Download `baichuan.py` (which defines the `Baichuan` model class) and add it in `VLMEvalKit/vlmeval/vlm`. --- ### **2. Modify `VLMEvalKit/vlmeval/vlm/__init__.py`** Add the following line: ```python from .baichuan import Baichuan ``` --- ### **3. Modify `VLMEvalKit/vlmeval/config.py`** Import the `Baichuan` model: ```python from vlmeval.vlm import Baichuan ``` Add the `Baichuan-omni` model configuration: ```python 'Baichuan-omni': partial( Baichuan, sft=True, model_path='/your/path/to/the/model/checkpoint' ) ``` --- ### **4. Modify `VLMEvalKit/vlmeval/dataset/image_mcq.py`** Download `image_mcq.py` and add the following code to define the `OpenMMMedical` class. Ensure the `image_folder` points to your OpenMM-Medical dataset location: ```python class OpenMMMedical(ImageMCQDataset): @classmethod def supported_datasets(cls): return ['OpenMMMedical'] def load_data(self, dataset='OpenMMMedical'): image_folder = "/your/path/to/OpenMM_Medical" def generate_tsv(pth): import csv from pathlib import Path tsv_file_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv') ... ``` --- ### **5. Update `VLMEvalKit/vlmeval/dataset/__init__.py`** Import `OpenMMMedical`: ```python from .image_mcq import ( ImageMCQDataset, MMMUDataset, CustomMCQDataset, MUIRDataset, GMAIMMBenchDataset, MMERealWorld, OpenMMMedical ) IMAGE_DATASET = [ ImageCaptionDataset, ImageYORNDataset, ImageMCQDataset, ImageVQADataset, MathVision, MMMUDataset, OCRBench, MathVista, LLaVABench, MMVet, MTVQADataset, TableVQABench, MMLongBench, VCRDataset, MMDUDataset, DUDE, SlideVQA, MUIRDataset, GMAIMMBenchDataset, MMERealWorld, OpenMMMedical ] ``` --- ### **6. Update `VLMEvalKit/vlmeval/dataset/image_base.py`** Modify the `img_root_map` function: ```python def img_root_map(dataset): if 'OpenMMMedical' in dataset: return 'OpenMMMedical' if 'OCRVQA' in dataset: return 'OCRVQA' if 'COCO_VAL' == dataset: return 'COCO' if 'MMMU' in dataset: return 'MMMU' ``` --- ### **7. Run the Evaluation** Execute the following command to start the evaluation: ```bash python run.py --data OpenMMMedical --model Baichuan-omni --verbose ``` --- ### **Notes:** - Ensure that all paths (e.g., `/your/path/to/OpenMM_Medical`) are correctly specified. - Confirm that the Baichuan model checkpoint is accessible at the defined `model_path`. - Validate the dependencies and configurations of VLMEvalKit to avoid runtime issues. With this setup, you should be able to evaluate OpenMM-Medical using Baichuan-Omni successfully.