DIR="/data/wet-data/output/toxic_filtered_without_bloom_new/2024-10/" TRAIN_DIR=$DIR OUTPUT_TRAIN_DIR="/data/hineng/data_all_eng_slimpj/" DATASET_NAME="english" FINAL_DIR="/data/datasets/$DATASET_NAME/" mkdir -p $FINAL_DIR $OUTPUT_TRAIN_DIR files=($(ls /data/enfm-dataprocessing/Data_Info/SlimPajama-627B-DC/train/*/*)) for f in ${files[@]}; do echo $f new_name=$(echo $f | sed "s/\//_/g") cmd="unzstd $f --stdout > $OUTPUT_TRAIN_DIR/output$new_name.jsonl" echo $cmd eval $cmd done; final_cmd="cat $OUTPUT_TRAIN_DIR/*.jsonl > $OUTPUT_TRAIN_DIR/final_complete_en.jsonl" eval $final_cmd #mkdir -p $FINAL_DIR/tokenizer/ #cd /Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/ #python3 tools/preprocess_data.py \ # --input $FINAL_DIR/final.jsonl \ # --output-prefix $FINAL_DIR/tokenizer/ \ # --vocab-file /sml1/datasets/gpt2/vocab.json \ # --merge-file /sml1/datasets/gpt2/merges.txt \ # --dataset-impl mmap --tokenizer-type GPT2BPETokenizer \ # --append-eod --workers 8 --chunk-size 50 >tokenizer.out 2>tokenizer.err