{"text":"\\section{Introduction}\n\nThe $d$-dimensional semi-discrete wave equation is given as the following infinite system of second order ordinary differential equations: \n\\begin{equation}\\label{u0}\n\\frac{d^2}{dt^2} u(t)[k] \n-a^2 \\sum_{j=1}^d \\(u(t)[k+e_j] - 2u(t)[k] + u(t)[k-e_j]\\) =0,\\;\\;\n (t,k)\\in \\R \\times \\Z^d, \n\\end{equation}\nwhere $u(t)=\\{u(t)[k]\\}_{k\\in \\Z^d}$ and \n$a$ is a positive constant, $\\{e_j,\\ldots,e_d\\}$ is the standard basis of $\\R^d$. \n\\eqref{u0} is a discretization with respect to the space variables for the following $d$-dimensional wave equation: \n\\begin{equation}\\label{w}\n \\pa_t^2 u(t,x) - a^2 \\sum_{j=1}^d \\pa_{x_j}^2 u(t,x) = 0,\\;\\;\n (t,x)\\in \\R \\times \\R^d, \n\\end{equation}\nwhere $a$ describes the propagation speed of the wave. \nOne of the most important properties for the wave equation \\eqref{w} is the following equality which is called the energy conservation: \n\\begin{equation}\\label{ec}\n\\tilde{E}(t):=\\int_{\\R^d} |\\pa_t u(t,x)|^2\\,dx\n +a^2 \\sum_{j=1}^d \\int_{\\R^d} |\\pa_{x_j} u(t,x)|^2\\,dx\n \\equiv \\tilde{E}(t_0),\\;\\;\n t,t_0\\in \\R. \n\\end{equation}\nHowever, if the propagation speed $a$ depends on time variable, then \\eqref{ec} does not hold in general. \nOn the contrary, the existence of a solution in the Sobolev space may not be valid if $a(t)$ has singularities like non-Lipschitz continuity or degeneration (see \\cite{CDS,CJS}); \nthus time dependent propagation speed is possible to give a crucial influence to the property of the wave equation. \n\nLet us consider the following Cauchy problem for the wave equation with time dependent propagation speed: \n\\begin{equation}\\label{wC}\n\\begin{cases}\n\\ds{\\pa_t^2 u(t,x) - a(t)^2 \\sum_{j=1}^d \\pa_{x_j}^2 u(t,x) = 0}, \n & (t,x)\\in \\R_+ \\times \\R^d, \\\\\nu(0,x)=u_0(x),\\;\\; (\\pa_t u)(0,x)=u_1(x), & x\\in \\R^d, \n\\end{cases}\n\\end{equation}\nwhere $\\R_+:=[0,\\infty)$ and \n$a(t)$ satisfies \n\\begin{equation}\\label{a0a1}\n a_0 \\le a(t) \\le a_1\n\\end{equation}\nfor some positive constants $a_0$ and $a_1$. \nSince the energy conservation does not hold for \\eqref{wC}, \nwe introduce the generalized energy conservation, which is abbreviated as GEC, \nas the following uniform equivalence of the energy with respect to $t$: \n\\begin{equation}\n\\label{tGEC}\n \\tilde{E}(0) \\lesssim \\tilde{E}(t) \\lesssim \\tilde{E}(0),\n \\;\\; t \\in \\R_+,\n\\end{equation} \nwhere $f \\lesssim g$ with positive functions $f$ and $g$ denotes that \nthere exists a positive constant $C$ such that $f \\le Cg$. \nWe will use the notations $g \\gtrsim f$ and $f \\simeq g$ if \n$f\\lesssim g$ and $g\\lesssim f \\lesssim g$ hold, respectively. \nMoreover, we will use $C$ to denote a generic positive constant. \n\nLet $a\\in C^m(\\R_+)$ with $m\\ge 1$ and $(u_0,u_1)\\in H^2\\times H^1$. \nThen a unique time global classical solution of \\eqref{wC} exists, and the following energy estimate holds: \n\\begin{equation}\\label{tE-a'L1}\n \\tilde{E}(t) \\le \\exp\\(\\frac{2}{a_0}\\int^t_0 |a'(s)|\\,ds\\) \\tilde{E}(0),\n \\;\\; t\\in \\R_+. \n\\end{equation}\nIt follows that GEC holds if $a'\\in L^1(\\R_+)$. \nOn the other hand, the success or failure of GEC depends on the properties of $a(t)$ and the initial data if $a'\\not\\in L^1((0,\\infty))$. \nIndeed, the following result is known: \n\n\\begin{theorem}[\\cite{RS}]\\label{Thm-RS}\n\\begin{itemize}\n\\item[(i)] \nIf $a\\in C^2(\\R_+)$, $|a'(t)|\\lesssim (1+t)^{-1}$ and $|a''(t)|\\lesssim (1+t)^{-2}$, then GEC is established for the Cauchy problem \\eqref{wC}. \n\\item[(ii)] \nFor any positive and monotone increasing function $\\nu(t)$ satisfying \n$\\lim_{t\\to\\infty}\\nu(t)=\\infty$, the conditions \n$|a'(t)|\\lesssim \\nu(t)(1+t)^{-1}$ and $|a''(t)|\\lesssim \\nu(t)(1+t)^{-2}$ \ndoes not necessarily conclude GEC. \n\\end{itemize}\n\\end{theorem}\n\n\\begin{remark}\n\\eqref{tE-a'L1} is derived by the estimate\n\\begin{equation}\\label{tE'}\n \\tilde{E}'(t)=2a'(t)a(t) \\sum_{j=1}^d \\int_{\\R^d} |\\pa_{x_j} u(t,x)|^2\\,dx\n \\le \\frac{2|a'(t)|}{a(t)} \\tilde{E}(t)\n\\end{equation}\nand Gronwall's inequality. \nWe observe from the first equality of \\eqref{tE'} that $\\tilde{E}(t)$ increases and decreases if $a'(t)>0$ and $a'(t)<0$, respectively. \nThat is, time dependent propagation speed causes increase or decrease for the energy. \nFurthermore, we notice that the second inequality is not taken account the sign of $a'(t)$. \nActually, \\eqref{tE'} is obtained with assuming both $a'(t)>0$ and $a'(t)<0$ increase the energy, but Theorem 1.1 (i) is derived with considering some cancellation of the energy which is caused by changing sign of $a'(t)$. \n\\end{remark}\n\nAccording to Theorem \\ref{Thm-RS}, the oscillation speed of $a(t)$, which is described by the order of $|a'(t)|$, is crucial for GEC, and the order of threshold is $(1+t)^{-1}$. \nHowever, GEC is not determined only the order of $|a'(t)|$. \nIndeed, under the additional assumptions to $a(t)$ below, GEC is possible even if $|a'(t)|\\lesssim (1+t)^{-1}$ does not hold. \n\n\\begin{description}\n\\item[(H1)]\nThere exists a positive constant $a_\\infty$ such that either of the following estimates hold: \n\\begin{equation}\\label{stbc-}\n \\int^\\infty_t|a(s)-a_\\infty|\\,ds \\lesssim (1+t)^{\\al}\n \\;\\text{ for }\\;\n \\al < 0\n\\end{equation}\nor\n\\begin{equation}\\label{stbc}\n \\int^t_0|a(s)-a_\\infty|\\,ds \\lesssim (1+t)^{\\al}\n \\;\\text{ for }\\;\n 0\\le \\al \\le 1.\n\\end{equation}\n\\item[(H2)]\n$a \\in C^m(\\R_+)$ with $m\\ge 1$ and the following estimates hold for $\\be<1$: \n\\begin{equation}\\label{akc}\n \\left|a^{(k)}(t)\\right| \\lesssim (1+t)^{-k\\be},\\;\\; k=1,\\ldots,m. \n\\end{equation}\n\\end{description}\n\nThen the following theorem is established: \n\\begin{theorem}[\\cite{H07}]\\label{Thm-H07}\nIf $m\\ge 2$, $a(t)$ satisfies {\\rm (H1)} and {\\rm (H2)} for \n\\begin{equation}\\label{albem}\n \\be \\ge \\al + \\frac{1-\\al}{m},\n\\end{equation}\nthen GEC is established for the Cauchy problem \\eqref{wC}. \nOn the other hand, if $\\be<\\al$, then GEC does not hold in general. \n\\end{theorem}\n\n\\begin{remark}\nThe right hand side of \\eqref{albem} is smaller as $m$ larger or $\\al$ smaller. That is, the restriction on $\\be$ can be weaker if the differentiability of $a(t)$ is higher or the restriction of (H1) is stronger. \nActually, the Theorem \\ref{Thm-H07} does not conclude the optimality of the condition \\eqref{albem}, but the limit case $m=\\infty$ is nearly optimal for GEC. \n\\end{remark}\n\n\\begin{remark}\nSince the estimate \\eqref{stbc} with $\\al=1$ is trivial, \nTheorem \\ref{Thm-RS} can be considered a special case of Theorem \\ref{Thm-H07} without (H1). \n\\end{remark}\n\n\nLet us consider the following initial boundary value problem: \n\\begin{equation}\\label{wIBV}\n\\begin{cases}\n\\ds{\\pa_t^2 u(t,x) - a^2 \\sum_{j=1}^d \\pa_{x_j}^2 u(t,x) = 0}, \n & (t,x)\\in \\R_+ \\times \\Om, \\\\\nu(t,x)=0, & (t,x)\\in \\R_+\\times \\pa\\Om,\\\\\nu(0,x)=u_0(x),\\;\\; \\(\\pa_t u\\)(0,x)=u_1(x), & x\\in \\pa\\Om, \n\\end{cases}\n\\end{equation}\nwhere $\\Om$ is a bounded domain of $\\R^d$ with smooth boundary $\\pa\\Om$. \nThen the following energy conservation corresponding to \\eqref{ec} for \\eqref{wC} is established: \n\\begin{equation*\n\\tilde{E}(t):=\\int_{\\Om} |\\pa_t u(t,x)|^2\\,dx\n +a^2 \\sum_{j=1}^d \\int_{\\Om} |\\pa_{x_j} u(t,x)|^2\\,dx\n\\equiv \\tilde{E}(t_0). \n\\end{equation*}\nMoreover, if $a$ depends on time variable, then the following theorem, which is corresponding to Theorem \\ref{Thm-H07} in bounded domain, is established: \n\\begin{theorem}[\\cite{H10}]\\label{Thm-H10}\nIf $m\\ge 2$ and $a=a(t)$ satisfies {\\rm (H2)} for \n\\begin{equation}\\label{albem-bdd}\n \\be \\ge \\frac{1}{m},\n\\end{equation}\nthen GEC is established for the initial boundary problem \\eqref{wIBV}. \n\\end{theorem}\n\nThe condition \\eqref{albem-bdd} in Theorem \\ref{Thm-H10} corresponds to \\eqref{albem} in Theorem \\ref{Thm-H07} with $\\al=0$. \nThis implies that GEC is established without the assumption (H1) even though the oscillation speed is faster on the problem \\eqref{wIBV}. \nBriefly, (H1) and (H2) are required for the estimate of the solution in the time-frequency space for the low and the high frequency part, respectively. \nHowever, (H1) is not necessary for the problem \\eqref{wIBV} because the influence to the low frequency part can be neglected since the largest Dirichlet eigenvalue of the Laplace operator $\\sum_{j=1}^d \\pa_{x_j}^2$ is strictly negative. \nOne of our main interest of the present paper is how the properties (H1) and (H2) for the time dependent propagation speed $a(t)$ relate to the energy estimate for semi-discrete wave equation \\eqref{u0}. \n\nThere are many studies on the discretized wave equations with constant propagation speed, but not many results are known for time dependent propagation model, especially in the case that the propagation speed $a(t)$ is singular to collapse GEC. In \\cite{CR}, an approximation of the discretized wave equation with respect to time variable is studied in the case that $a(t)$ is degenerate and oscillating which was studied in \\cite{CJS}. The result is not directly related to the studies of the present paper; indeed, no approximation to the continuous model will be discussed, but discretization is a useful approach to study the influence of the time dependent propagation speed to the energy of the solution in time-frequency spaces. \n\n\n\n\\section{Discretization and discrete-time Fourier transformation}\n\nLet us consider a discretized model of the Cauchy problem for the wave equation \\eqref{wC} with respect to the space variables $x$. \n\nFor $f = \\{f[k]\\}_{k\\in \\Z^d}$ and $j=1,\\ldots,d$, we denote \nthe forward and the backward difference operators $D_j^+$ and $D_j^-$ by \n\\begin{equation*}\n D_j^+ f := \\{f[k+e_j]-f[k]\\}_{k\\in\\Z^d}\n \\;\\text{ and }\\;\n D_j^- f := \\{f[k]-f[k-e_j]\\}_{k\\in\\Z^d},\n \\;\\; k\\in \\Z^d,\n\\end{equation*}\nrespectively. \nThen the discrete Laplace operator in $\\Z^d$ is given by \n$\\sum_{j=1}^d D_j^+ D_j^-$, that is, \n\\begin{equation*}\n \\sum_{j=1}^d D_j^+ D_j^- f[k]\n =\\sum_{j=1}^d \\(f[k+e_j]-2f[k]+f[k-e_j]\\). \n\\end{equation*}\n\nFor the solution $u(t,x)$ of \\eqref{wC}, we consider the $d$-dimensional infinite matrix valued function $u(t)=\\{u(t)[k]\\}_{k\\in \\Z^d}$ as a sampled of $u(t,x)$ on the lattice $\\Z^d$. \nThen a discretized model of \\eqref{wC} is given as the following initial value problem for an infinite system of ordinary differential equations, \nwhich is called the semi-discrete wave equation with time dependent propagation speed: \n\\begin{equation}\\label{u}\n\\begin{cases}\n\\ds{\n u''(t)[k] \n -a(t)^2 \\sum_{j=1}^d D_j^+ D_j^- u(t)[k] =0, }\n & (t,k)\\in \\R_+ \\times \\Z^d, \n\\\\[3mm]\n\\ds{\n u(0)[k]=u_0[k],\\;\\; u'(0)[k]=u_1[k], }\n &k\\in \\Z^d.\n\\end{cases}\n\\end{equation}\nThen we define the total energy for the solution of \\eqref{u} by \n\\begin{equation*\n E(t):=\n \\sum_{k\\in \\Z^d}\\left|u'(t)[k]\\right|^2\n +a(t)^2 \\sum_{j=1}^d \\sum_{k\\in \\Z^d}\\left|D_j^+ u(t)[k]\\right|^2. \n\\end{equation*}\nEvidently, the energy conservation $E(t)\\equiv E(0)$ is valid if the propagation speed $a$ is a constant, but it does not hold in general for variable propagation speed. \nTherefore, the following energy estimate corresponding to \\eqref{tGEC} can be considered: \n\\begin{equation}\\label{GEC}\n E(t) \\simeq E(0).\n\\end{equation}\nHere \\eqref{GEC} will be also denoted by GEC. \n\nIt is usual to study the energy estimate of \\eqref{wC} and \\eqref{wIBV} in the time-frequency spaces by introducing Fourier transformation and Fourier coefficients with respect to the space variables of the solution rather than the solutions $u(t,x)$ themselves. \nTherefore, we introduce the discrete-time Fourier transformation to study the energy estimate of the solution for \\eqref{u}. \n\n\\begin{definition}\nFor $f=\\{f[k]\\}_{k\\in \\Z^d} \\in l^2(\\Z^d)$ we define the discrete-time Fourier transformation $\\cF_{\\Z^d}[f](\\th)$ by\n\\begin{equation*}\n \\cF_{\\Z^d}[f](\\th):=\\sum_{k\\in \\Z^d} e^{-\\i k\\cd\\th} f[k],\n \\;\\; \\th=(\\th_1,\\ldots,\\th_d) \\in \\R^d,\n\\end{equation*}\nwhere $k \\cdot \\th = \\sum_{j=1}^d k_j \\th_j$ and $k=(k_1,\\ldots,k_d)$. \nWe denote that $\\cF_{\\Z^d}[f]=\\hat{f}$ and \n$\\sum_{k\\in \\Z^d}=\\sum_{k}$ without any confusion. \n\\end{definition}\n\nSince the discrete-time Fourier transformation $\\hat{f}(\\th)$ is the $d$-dimensional Fourier series with the Fourier coefficient $\\{f[-k]\\}_{k\\in \\Z^d}$, \n$\\hat{f}$ is a $2\\pi$-periodic function in $\\R^d$. \nThat is, the following equality holds: \n\\begin{equation*}\n \\hat{f}(\\th+2k\\pi)=\\hat{f}(\\th)\n\\end{equation*}\nfor any $k\\in \\Z^d$ and $\\th\\in \\T^d$, where $\\T:=[-\\pi,\\pi]$. \nTherefore, we will restrict the domain of $\\cF_{\\Z^d}[\\cd]$ on $\\T^d$. \n\nHere we introduce some lemmas for the discrete-time Fourier transformation, \nwhere the proofs will be introduced in Appendix. \n\\begin{lemma}\\label{TDFT}\nIf $f \\in l^1(\\Z^d)$ then the following equalities are established \nfor $j=1,\\ldots,d$: \n\\begin{equation}\\label{TDFT2}\n \\cF_{\\Z^d}[D_j^+ f](\\th) = \\(e^{\\i\\th_j}-1\\) \\hat{f}(\\th)\n\\end{equation}\nand\n\\begin{equation}\\label{TDFT3}\n \\cF_{\\Z^d}[D_j^+D_j^- f](\\th) \n = -4\\(\\sin\\frac{\\th_j}{2}\\)^2\\hat{f}(\\th).\n\\end{equation}\n\\end{lemma}\n\n\n\\begin{lemma}\\label{lemm-Parseval}\nIf $f \\in l^2(\\Z^d)$ then\nthe following Parseval's type equality is established: \n\\begin{equation*\n \\sum_{k\\in \\Z^d}|f[k]|^2\n =\\frac{1}{(2\\pi)^d}\\int_{\\T^d}|\\hat{f}(\\th)|^2\\,d\\th. \n\\end{equation*}\n\\end{lemma}\n\nFor $\\th\\in \\T^d$ we define $\\xi=\\xi(\\th)$ by \n\\begin{equation}\\label{xith}\n \\xi(\\th)=(\\xi_1(\\th_1),\\ldots,\\xi_d(\\th_d)),\\;\\;\n \\xi_j(\\th_j):=2\\sin\\frac{\\th_j}{2}\n \\;\\;(j=1,\\ldots,d).\n\\end{equation}\nBy the discrete-time Fourier transformation, \\eqref{u} is reduced to the following problem: \n\\begin{equation}\\label{hu}\n\\begin{cases}\n\\partial_t^2 \\hat{u}(t,\\th) \n+a(t)^2 |\\xi(\\th)|^2 \\hat{u}(t,\\th) =0, &\n (t,\\th)\\in \\R_+ \\times \\T^d, \n\\\\\n \\hat{u}(0,\\th)=\\hat{u}_0(\\th),\\;\\;\n \\(\\partial_t \\hat{u}\\)(0,\\th)=\\hat{u}_1(\\th), \n & \\th\\in \\T^d,\n\\end{cases}\n\\end{equation}\nwhere $\\hat{u}(t,\\th)=\\sum_{k} e^{-\\i k\\cd\\th}u(t)[k]$. \n\nFor the solution $\\hat{u}(t,\\th)$ of \\eqref{hu}, we define the energy density function $\\cE(t,\\th)$ by \n\\begin{equation*\n \\cE(t,\\th):=\n \\left|\\pa_t \\hat{u}(t,\\th)\\right|^2\n +a(t)^2 |\\xi(\\th)|^2 \\left|\\hat{u}(t,\\th)\\right|^2.\n\\end{equation*}\nBy Lemma \\ref{lemm-Parseval}, the total energy $E(t)$ is represented by $\\cE(t,\\th)$ as follows: \n\\begin{lemma}\\label{lemm-E-cE}\nIf $u'(t), D_j^+ u(t)\\in l^2(\\Z^d)$ $(j=1,\\ldots,d)$, \nthen the following equality is established: \n\\begin{equation}\\label{EcE}\n E(t) = \\frac{1}{(2\\pi)^d}\\int_{\\T^d} \\cE(t,\\th)\\,d\\th.\n\\end{equation}\n\\end{lemma}\n\nIn the Cauchy problem of the wave equation \\eqref{wC}, we shall call it a continuous model, not only the total energy $\\tE(t)$ but also the energy density $\\tcE(t,\\xi)$: \n\\begin{equation*\n \\tcE(t,\\xi):=\n \\left|\\pa_t \\cF_{\\R^d}[u](t,\\xi)\\right|^2\n +a^2 |\\xi|^2 \\left|\\cF_{\\R^d}[u](t,\\xi)\\right|^2\n\\end{equation*}\nis conserved if the propagation speed $a$ is a constant, \nwhere $\\cF_{\\R^d}[u](t,\\xi)$ denotes the Fourier transformation of $u(t,x)$ with respect to the space variable $x$. \nHowever, the energy density is not conserved for time dependent propagation speed in general. \nIndeed, time dependent propagation speed has the effect of changing the total energy with respect to $t$, and it considered to be a phenomenon that caused by transition of energy across frequencies. \nBasically, the behavior of $\\tcE(t,\\xi)$ is determined by the properties of $a(t)$, and the assumptions for $a(t)$ in Theorem \\ref{Thm-H07} ensure the estimate $\\tcE(t,\\xi)\\simeq \\tcE(0,\\xi)$. \nOn the other hand, the negative results for \\eqref{tGEC} are implied from the unboundedness of $\\tcE(t,\\xi)$. \nIn particular, the non-existence result in the Sobolev space is derived from the increase in the energy in high frequency part which is provided from the non-Lipschitz continuity with very fast oscillation of $a(t)$. \n\nThe energy density $\\cE(t,\\th)$ for the solution of the semi-discrete model \\eqref{hu} is also conserved if the propagation speed $a$ is a constant. \nOn the other hand, if the propagation speed is variable, then the estimate \n\\begin{equation}\\label{GECcE}\n \\cE(t,\\th) \\simeq \\cE(0,\\th)\n\\end{equation}\ndoes not hold in general as in the case of continuous model, and thus GEC may not be established. \nIt will be natural that the estimate \\eqref{GECcE} is established if $a(t)$ satisfies the same assumptions of Theorem \\ref{Thm-RS} and Theorem \\ref{Thm-H07}. \nHowever, we may expect to prove \\eqref{GECcE} under some weaker assumptions to $a(t)$, because the range of $|\\xi|$ for $\\tcE(t,\\xi)$ is $[0,\\infty)$, but the range of $|\\xi(\\th)|$ for $\\cE(t,\\xi)$ is $[0,2\\sqrt{d}]$. In the other words, unlike the continuous model, the solution cannot have high-frequency energy above a certain level because the solution of semi-discrete model has a finite resolution. \nHere we note that the situation of high-frequency energy for the semi-discrete model is the corresponding to the low-frequency energy for the initial boundary value problem \\eqref{wIBV}. \n\n\\section{Main results}\nLet us generalize the properties \\eqref{stbc} of (H1) and (H2) by positive and monotone increasing functions $\\Th(t)$ and $\\Xi(t)$ on $\\R_+$ as follows: \n\n\\begin{description}\n\\item[(H1*)]\nThere exists a positive constant $a_\\infty$ such that the following estimate holds: \n\\begin{equation}\\label{stb}\n \\int^t_0|a(s)-a_\\infty|\\,ds \\le \\Th(t).\n\\end{equation}\n\\item[(H2*)]\n$a \\in C^m(\\R_+)$ with $m\\ge 1$ and the following estimates hold for some positive constants $C_k$:\n\\begin{equation}\\label{ak}\n \\left|a^{(k)}(t)\\right| \\le C_k \\Xi(t)^{-k},\\;\\; k=1,\\ldots,m. \n\\end{equation}\n\\end{description}\n\nFor $\\Th(t)$ and $\\Xi(t)$ we introduce the following conditions corresponding to the conditions $\\al\\le \\be$ and \\eqref{albem}: \n\\begin{description}\n\\item[(H3*)] \nThere exists a positive constant $C_0$ such that \n\\begin{equation}\\label{ThXi}\n\\Th(t) \\le C_0 \\Xi(t).\n\\end{equation}\n\\item[(H4*)]\nFor $m\\ge 2$, $\\Xi(t)^{-m}\\in L^1(\\R_+)$ and the following estimate holds: \n\\begin{equation}\\label{int_Cm}\n\\sup_{t\\ge 0}\\left\\{\\Th(t)^{m-1}\\int_t^\\infty \\Xi(s)^{-m}\\,ds\n\\right\\}<\\infty.\n\\end{equation}\n\\end{description}\n\nThen our first theorem is given as follows: \n\n\\begin{theorem}\\label{Thm1}\nFor the initial value problem of semi-discrete wave equation \\eqref{u}, GEC is established if any of the following \n{\\rm(i)} to {\\rm (iii)} is satisfied: \n\\begin{itemize}\n\\item[{\\rm (i)}]\n{\\rm (H1*)} with $\\sup_{t\\ge 0}\\{\\Th(t)\\}<\\infty$. \n\\item[{\\rm (ii)}]\n{\\rm (H2*)} with $m=1$ and $\\Xi(t)^{-1} \\in L^1(\\R_+)$. \n\\item[{\\rm (iii)}]\n{\\rm (H1*)}, {\\rm (H2*)}, {\\rm (H3*)} and {\\rm (H4*)}. \n\\end{itemize}\n\\end{theorem}\n\nIf we restrict ourselves $\\Th(t)=(1+t)^\\al$ and $\\Xi(t)=(1+t)^\\be$ with $m\\be>1$, then \\eqref{stb}, \\eqref{ak} and \\eqref{int_Cm} \nare the same as \\eqref{stbc}, \\eqref{akc} and \\eqref{albem}, respectively. \nMoreover, \\eqref{ThXi} is valid if \\eqref{albem} holds. \nComparing the assumptions of $a(t)$ in Theorem \\ref{Thm1} with \nTheorem \\ref{Thm-H07} we observe the followings: \n\n\\begin{itemize}\n\\item\nIf $\\al>0$, then GEC is established under the same assumptions for $a(t)$. \n\\item\nThough GEC does not hold for \\eqref{wC} in general if $a(t)$ is not Lipschitz continuous, Theorem \\ref{Thm1} concludes GEC without any assumption of the continuity for $a(t)$ if $\\al=0$. \n\\end{itemize}\n\n\n\\begin{example}\\label{Ex1}\nLet $\\chi \\in C^m(\\R_+)$ be a positive and periodic function. \nFor non-negative constants $p$, $q$ and $r$ we define $a \\in C^m(\\R_+)$ by \n\\begin{equation*}\n a(t)=1 + (1+t)^{-p} \\chi\\((1+t)^q \\(\\log(e+t)\\)^r\\).\n\\end{equation*}\nThen we see the followings: \n\\begin{equation*}\n \\int^t_0|a(s)-1|\\,ds \\le \\Th(t) \\simeq\n \\begin{cases}\n 1 & (p>1), \\\\\n \\log(e+t) & (p=1), \\\\\n (1+t)^{-p+1} & (p<1).\n \\end{cases}\n\\end{equation*}\nMoreover, for any $k=1,\\ldots,m$ we have \n\\begin{align*}\n \\left|a^{(k)}(t)\\right| \n \\lesssim \\: & \n (1+t)^{-p}\\((1+t)^{q-1} \\(\\log(e+t)\\)^{r} \\)^k\n\\\\\n \\le \\: & \n \\((1+t)^{\\frac{p}{m}-q+1} \\(\\log(e+t)\\)^{-r} \\)^{-k}\n\\end{align*}\nfor $q>0$ and \n\\begin{align*}\n \\left|a^{(k)}(t)\\right| \n \\lesssim \\: &\n (1+t)^{-p}\\((1+t)^{-1} \\(\\log(e+t)\\)^{r-1} \\)^k\n\\\\\n \\le \\: &\n \\((1+t)^{\\frac{p}{m}+1} \\(\\log(e+t)\\)^{-r+1} \\)^{-k}\n\\end{align*}\nfor $q=0$. \nHence we set \n\\begin{equation}\n \\Xi(t)=\\begin{cases}\n (1+t)^{\\frac{p}{m}-q+1} \\(\\log(e+t)\\)^{-r} & (q>0),\\\\\n (1+t)^{\\frac{p}{m}+1} \\(\\log(e+t)\\)^{-r+1} & (q=0). \n \\end{cases}\n\\end{equation}\nBy Theorem \\ref{Thm1}, we have GEC if any of the following holds: \n\\begin{itemize}\n\\item $p>1$ (by (i)). \n\\item $m=1$ and $q
0}\\max_{\\tau\\in[0,2\\pi]}\n \\left\\{\\frac{1}{\\ve}\n \\left|\\frac{d^k}{d\\tau^k}\\chi_\\ve(\\tau)\\right|\\right\\}\n <\\infty\\quad(k=0,1,\\ldots,m).\n\\end{equation}\nFor a positive large constant $\\eta$ and positive constants $\\al$, $\\be$ and $\\ka$ satisfying \n\\begin{equation}\\label{pqka}\n \\al \\le \\ka \\le 1\n \\;\\text{ and }\\;\n \\al+\\frac{1-\\al}{m} \\le \\be \\le \\ka+\\frac{\\ka-\\al}{m},\n\\end{equation}\nwe define the sequences $\\{t_j\\}_{j=1}^\\infty$, $\\{\\ve_j\\}_{j=1}^\\infty$, $\\{\\rho_j\\}_{j=1}^\\infty$ and $\\{\\nu_j\\}_{j=1}^\\infty$ by \n\\begin{equation*}\n t_j:=\\eta^j,\\;\\;\n \\ve_j:=t_j^{\\al-\\ka},\\;\\;\n \\rho_j:=\\eta^{-1}t_j^\\ka\n \\;\\text{ and }\\;\n \\nu_j:=\\left[t_j^{-\\be+\\ka+\\frac{\\ka-\\al}{m}}+1\\right]. \n\\end{equation*}\nThen we define $a(t)$ by \n\\begin{equation*}\n a(t):=\\begin{cases}\n \\sqrt{1+\\chi_{\\ve_j}\\(\\nu_j\\rho_j^{-1}(t-t_j)\\)} \n & \\text{ for } \\; t\\in [t_j-\\rho_j,t_j+\\rho_j]\\;\\; (j=1,2,\\ldots),\\\\\n 1 & \\text{ for } \\; t\\in \\R_+ \\setminus \\bigcup_{j=1}^\\infty [t_j-\\rho_j,t_j+\\rho_j].\n\\end{cases}\n\\end{equation*}\nwhere $[\\;]$ denotes the Gauss symbol. \nHere we note that \n\\begin{align*}\n t_j + \\rho_j + \\rho_{j+1}\n= \\eta^j \\(1 + \\eta^{-j(1-\\ka) -1} + \\eta^{-(j+1)(1-\\ka)}\\)\n\\le 3 \\eta^j \\le \\eta^{j+1} = t_{j+1}\n\\end{align*}\nfor $\\eta \\ge 3$, it follows that \n$t_j + \\rho_j \\le t_{j+1} - \\rho_{j+1}$. \nLet $t\\in[t_{j-1}+\\rho_{j-1},t_j+\\rho_j]$. \nThen we have \n\\begin{equation}\n \\int^{t}_0 |a(s)-1|\\,ds\n \\lesssim \\sum_{k=1}^j \\ve_k \\rho_k\n =\\eta^{-1} \\sum_{k=1}^j \\eta^{k \\al} \\simeq t_j^\\al\n \\simeq (1+t)^\\al\n\\end{equation}\nand\n\\begin{align*}\n \\left|a^{(k)}(t)\\right|\n \\lesssim \\ve_j\\(\\nu_j \\rho_j^{-1}\\)^k \n \\simeq t_j^{-k\\be-(\\ka-\\al)\\(1-\\frac{k}{m}\\)}\n \\le t_j^{-k\\be}\n \\simeq (1+t)^{-k\\be}, \n\\end{align*}\nit follows that \\eqref{stb}, \\eqref{ak} and \\eqref{ThXi} are established with \n\\begin{equation}\n \\Th(t) \\simeq (1+t)^\\al\\;\\text{ and }\\;\n \\Xi(t) = (1+t)^\\be.\n\\end{equation}\nMoreover, by \\eqref{pqka} and noting $\\al+(1-\\al)\/m>1\/m$, we have \n$\\Xi(t)^{-m}\\in L^1(\\R_+)$ and \n\\begin{align*}\n \\Th(t)^{m-1}\\int^\\infty_t \\Xi(s)^{-m}\\,ds\n \\lesssim (1+t)^{\\al(m-1)-m\\be+1} \\lesssim 1,\n\\end{align*}\nthus \\eqref{int_Cm} is established. \nTherefore, $a(t)$ satisfies (iii) of Theorem \\ref{Thm1}. \n\\end{example}\n\nIf $a \\not\\in C^1(\\R_+)$, then \\eqref{wC} is not $L^2$ well-posed in general, hence the energy estimate $\\tE(t) \\lesssim \\tE(0)$ cannot be expected. \nHowever, $\\tE(t)$ is not necessarily unbounded if \\eqref{wC} is not $L^2$ well-posed. \nFor example, if $a(t)$ is a H\\\"older continuous function, then \\eqref{wC} is not $L^2$ well-posed in general but the Gevrey well-posed. \nThat is, if the initial data are functions of the Gevrey class of suitable order, then the solution is a function of the Gevrey class, too; \nhence $\\tE(t)$ is bounded (see \\cite{CDS}). \nIf $a(t)$ does not satisfy \\eqref{albem}, then GEC does not hold in general. \nHowever, if the initial data is a function of the Gevrey class of suitable order and \\eqref{stbc-} holds, then there exists a positive constant $C(u_0,u_1)$, which depends on not only the initial energy $\\tE(0)$ but also a norm of the initial data in the Gevrey class, such that the total energy $\\tE(t)$ is bounded as follows (see \\cite{EFH}): \n\\begin{equation}\\label{tBE}\n \\tE(t) \\le C(u_0,u_1). \n\\end{equation}\n\nFaster oscillation of $a(t)$, which is described as smaller $\\be$ not to satisfy \\eqref{albem}, may increase the high frequency part of the energy for the solution of \\eqref{wC} and cause GEC to collapse. \nHowever, since the high frequency part of the initial energy is small with the initial data in the Gevrey class, $\\tE(t)$ can stay bounded against the effect from the faster oscillation of $a(t)$. \nOur second theorem concludes a corresponding estimate to \\eqref{tBE} for the solution of the semi-discrete wave equation \\eqref{u} under some weaker assumptions than that for $a(t)$ in Theorem \\ref{Thm1}. \n\n\nFor a positive and strictly increasing function $\\La(t)$ on $\\R_+$ satisfying $\\lim_{t\\to\\infty}\\La(t)=\\infty$ such that \n\\begin{equation}\\label{La-infty}\n \\frac{\\Th(t)}{\\La(t)\n \\text{ is monotone increasing and }\n \\lim_{t\\to\\infty}\\frac{\\Th(t)}{\\La(t)}=\\infty,\n\\end{equation}\nwe introduce the following conditions that are alternative to (H3*) and (H4*): \n\\begin{description}\n\\item[(H5*)]\nThere exists a positive constant $C_0$ such that \n\\begin{equation*\n \\La(t)\\le C_0 \\Xi(t). \n\\end{equation*}\n\\item[(H6*)]\nFor $m\\ge 2$, $\\Xi(t)^{-m}\\in L^1(\\R_+)$ and the following estimate holds: \n\\begin{equation*\n \\sup_{t\\ge 0}\\left\\{\\La(t)^m \\Th(t)^{-1}\\int^\\infty_t \\Xi(s)^{-m}\\,ds\n \\right\\}<\\infty.\n\\end{equation*}\n\\end{description}\n\nHere we note that if $\\La(t) \\simeq \\Th(t)$, then (H5*) and (H6*) are coincide with (H3*) and (H4*), respectively. \nOn the other hand, it is possible that (H6*) holds, but (H4*) does not hold if \\eqref{La-infty} is valid. \nOur second theorem is given as follows: \n\n\\begin{theorem}\\label{Thm2}\nLet $m\\ge 2$. \nIf $\\Th(t)$, $\\Xi(t)$ and $\\La(t)$ satisfy {\\rm (H1*)}, {\\rm (H2*)}, \\eqref{La-infty}, {\\rm (H5*)} and {\\rm (H6*)}, then there exists a positive constant $N_0$ such that the following estimate is established: \n\\begin{equation*\n \\cE(t,\\th) \\lesssim \n \\exp\\(2|\\xi(\\th)| \\Th\\(\\La^{-1}\\(\\frac{N_0}{|\\xi(\\th)|}\\)\\)\\)\n \\cE(0,\\th). \n\\end{equation*}\nConsequently, denoting \n\\begin{equation*}\n U(N,u_0,u_1):=\n \\int_{\\T^d}\n \\exp\\(2|\\xi(\\th)| \\Th\\(\\La^{-1}\\(\\frac{N}{|\\xi(\\th)|}\\)\\)\\)\n \\cE(0,\\th)\n \\,d\\th\n\\end{equation*}\nfor $N>0$, we have the followings: \n\\begin{itemize}\n\\item[{\\rm (i)}] \nIf $U(N,u_0,u_1)<\\infty$ holds for any $N\\ge 1$, then there exists a positiv constant $N_0$ such that the energy estimate \n\\begin{equation}\\label{Ebdd}\n E(t) \\lesssim U(N_0,u_0,u_1)\n\\end{equation} \nis established. \n\\item[{\\rm (ii)}] \nThere exists a positive constant $N_0$, and the energy estimate\n\\eqref{Ebdd} is established for any $(u_0,u_1)$ satisfying \n$U(N_0,u_0,u_1)<\\infty$. \n\\end{itemize}\n\n\\end{theorem}\n\n\\begin{remark}\nDenoting $t=\\La^{-1}(r^{-1})$ for $r>0$, we have \n\\begin{equation}\\label{La-infty2}\n \\mu(r):=r \\Th\\(\\La^{-1}\\(\\frac{1}{r}\\)\\)\n =\\frac{\\Th(t)}{\\La(t)}\n \\nearrow \\infty \\quad (r \\to +0)\n\\end{equation}\nby \\eqref{La-infty} since $\\La^{-1}(r^{-1})$ is positive and strictly decreasing with respect to $r$. \nIt follows that \n\\begin{equation*}\n \\lim_{\\th \\to 0}\n |\\xi(\\th)|\\Th\\(\\La^{-1}\\(\\frac{N}{|\\xi(\\th)|}\\)\\)\n =\\lim_{|\\xi|\\to 0}N\\mu\\(\\frac{N}{|\\xi|}\\) = \\infty. \n\\end{equation*}\nOn the other hand, if $\\Th(t) \\lesssim \\La(t)$, then we have\n\\[\n \\sup_{\\th\\in\\T^d\\setminus\\{0\\}}\\left\\{\n |\\xi(\\th)|\\Th\\(\\La^{-1}\\(\\frac{N}{|\\xi(\\th)|}\\)\\)\n \\right\\}<\\infty, \n\\]\nit follows that $U(N,u_0,u_1) \\simeq E(0)$ by Lemma \\ref{lemm-E-cE}. \nTherefore, \\eqref{La-infty} is a reasonable assumption for the case that Theorem \\ref{Thm1} cannot be applied. \n\\end{remark}\n\nSince \\eqref{La-infty} provides \n\\[\n \\lim_{|\\th| \\to 0} |\\xi(\\th)|\\Th\\(\\La^{-1}\\(\\frac{1}{|\\xi(\\th)|}\\)\\)=\\infty, \n\\]\nthe condition\n\\begin{equation}\\label{est_Thm2}\nU(N,u_0,u_1)<\\infty\n\\end{equation}\nin Theorem \\ref{Thm2} requires approximately that the $|\\xi(\\th)|\\hat{u}_0(\\th)$ and $\\hat{u}_1(\\th)$ degenerate at $\\th=0$ in an appropriate order which is determined by $\\Th(t)$ and $\\Xi(t)$. \nThe following examples of $\\Th(t)$, $\\Xi(t)$ and $u_1$ provide \\eqref{est_Thm2} for $d=1$ and $u_0=0$. \n\n\\begin{example}\\label{Ex1Thm2}\nLet $a(t)$ be defined in Example \\ref{Ex1} with $m\\ge 2$, $p=q=0$, \n$r \\ge 1$ and $|\\chi| \\le 1$. \nThen we have \n\\begin{equation*}\n \\Th(t) = 1+t, \\;\\;\n \\Xi(t) \\simeq (1+t)\\(\\log(e+t)\\)^{-r+1}, \n\\end{equation*}\nand (H4*) does not hold. \nLet us define $\\La(t)$ by \n\\begin{align*}\n \\La(t):= \\: & (1+t)\\(\\log(e+t)\\)^{-r+1}\n = \\(\\frac{1+t}{(1+t)^{-m+1}\\(\\log(e+t)\\)^{m(r-1)}}\\)^{\\frac{1}{m}}\n\\\\\n \\simeq \\: & \\(\\frac{\\Th(t)}{\\int^\\infty_t \\Xi(s)^{-m}\\,ds}\\)^{\\frac{1}{m}}. \n\\end{align*}\nThen \\eqref{La-infty}, (H5*) are (H6*) are valid. \nNoting that $\\La^{-1}(\\tau) \\simeq \\tau (\\log \\tau)^{r-1}$ for $\\tau\\ge e$, \nthere exists a positive constant $M$ such that \n\\begin{align*}\n \\exp\\(2 |\\xi(\\th)| \\Th\\(\\La^{-1}\\(\\frac{N}{|\\xi(\\th)|}\\)\\)\\)\n \\lesssim\n \\exp\\(2M N \\(\\log\\frac{N}{|\\xi(\\th)|}\\)^{r-1}\\)\n\\end{align*}\nfor any $N\\ge 2e$ on $\\T\\setminus\\{0\\}$. \nFor $M_0>0$, we define $u_1=\\{u_1[k]\\}_{k\\in \\Z}$ by \n\\begin{equation*\n u_1[k]:=\\frac{1}{2\\pi}\\int_\\T\n \\(\\sin^2 \\frac{\\th}{2}\\)^{\\frac{M_0}{2}} e^{\\i k \\th}\\,d\\th, \n\\end{equation*}\nit follows that\n\\begin{align*}\n \\cE(0,\\th)\n =\\(\\sin^2 \\frac{\\th}{2}\\)^{M_0}\n =\\(\\frac{N}{2}\\)^{2M_0} \n \\exp\\(-2M_0\\log \\frac{N}{|\\xi(\\th)|} \\). \n\\end{align*}\nThen we have \n\\begin{align*}\n U(N,u_0,u_1)\n \\lesssim \\int_\\T \n \\exp\\(2M N\\(\\log\\frac{N}{|\\xi(\\th)|}\\)^{r-1}\n -2M_0\\log \\frac{N}{|\\xi(\\th)|} \\)\n \\,d\\th.\n\\end{align*}\nIf $1