"""Modifies TFDS dataset with a map function, updates the feature definition and stores new dataset.""" from functools import partial from absl import app, flags import tensorflow as tf import tensorflow_datasets as tfds from rlds_dataset_mod.mod_functions import TFDS_MOD_FUNCTIONS from rlds_dataset_mod.multithreaded_adhoc_tfds_builder import ( MultiThreadedAdhocDatasetBuilder, ) FLAGS = flags.FLAGS flags.DEFINE_string("dataset", None, "Dataset name.") flags.DEFINE_string("data_dir", None, "Directory where source data is stored.") flags.DEFINE_string("target_dir", None, "Directory where modified data is stored.") flags.DEFINE_list("mods", None, "List of modification functions, applied in order.") flags.DEFINE_integer("n_workers", 10, "Number of parallel workers for data conversion.") flags.DEFINE_integer( "max_episodes_in_memory", 100, "Number of episodes converted & stored in memory before writing to disk.", ) def mod_features(features): """Modifies feature dict.""" for mod in FLAGS.mods: features = TFDS_MOD_FUNCTIONS[mod].mod_features(features) return features def mod_dataset_generator(builder, split, mods): """Modifies dataset features.""" ds = builder.as_dataset(split=split) for mod in mods: ds = TFDS_MOD_FUNCTIONS[mod].mod_dataset(ds) for episode in tfds.core.dataset_utils.as_numpy(ds): yield episode def main(_): builder = tfds.builder(FLAGS.dataset, data_dir=FLAGS.data_dir) features = mod_features(builder.info.features) print("############# Target features: ###############") print(features) print("##############################################") assert FLAGS.data_dir != FLAGS.target_dir # prevent overwriting original dataset mod_dataset_builder = MultiThreadedAdhocDatasetBuilder( name=FLAGS.dataset, version=builder.version, features=features, split_datasets={split: builder.info.splits[split] for split in builder.info.splits}, config=builder.builder_config, data_dir=FLAGS.target_dir, description=builder.info.description, generator_fcn=partial(mod_dataset_generator, builder=builder, mods=FLAGS.mods), n_workers=FLAGS.n_workers, max_episodes_in_memory=FLAGS.max_episodes_in_memory, ) mod_dataset_builder.download_and_prepare() if __name__ == "__main__": app.run(main)