--- license: apache-2.0 language: - en pretty_name: FiftyOne_Gaussian_Splatting --- ## **Gaussian Splats Dataset** **3D Gaussian Splatting for Real-Time Radiance Field Rendering** **Dataset Author**: Paula Ramos **Created Using**: [3D Gaussian Splatting Paper](https://arxiv.org/abs/2308.04079) **Code Repository**: [GitHub - graphdeco-inria/gaussian-splatting](https://github.com/graphdeco-inria/gaussian-splatting) ## **Description** This dataset consists of Gaussian Splats representations of different real-world scenes, created using the official 3D Gaussian Splatting method. Each scene folder contains: A reference image representing the scene. A PLY file stored in a point_cloud_folder, containing the Gaussian Splats reconstruction. ### **Overview** This dataset consists of **Gaussian Splats representations** of different real-world scenes, created using the official **3D Gaussian Splatting method**. Each scene folder contains: - A **reference image** representing the scene. - Two **PLY files** stored in a `point_cloud_folder`, containing the **Gaussian Splats reconstructions at iterations 7000 and 30000**. The dataset is structured as follows: ```plaintext FO_dataset/ │── drjohnson/ # Scene Folder │ ├── reference_image.png │ ├── point_cloud_folder/ │ ├── reconstruction_7000.ply │ └── reconstruction_30000.ply │── playroom/ │ ├── reference_image.png │ ├── point_cloud_folder/ │ ├── reconstruction_7000.ply │ └── reconstruction_30000.ply │── train/ │ ├── reference_image.png │ ├── point_cloud_folder/ │ ├── reconstruction_7000.ply │ └── reconstruction_30000.ply │── truck/ │ ├── reference_image.png │ ├── point_cloud_folder/ │ ├── reconstruction_7000.ply │ └── reconstruction_30000.ply ``` --- ## **How to Use the Dataset** ### **1. Install the Required FiftyOne Plugin** To visualize all `.ply` files using FiftyOne, download the **Gaussian Splats plugin**: ```bash !fiftyone plugins download https://github.com/danielgural/ksplats_panel ``` ### **2. Load & Visualize the Dataset with FiftyOne** Use the following Python script to **load and explore the dataset** in FiftyOne: ```python import fiftyone as fo from fiftyone.utils.splats import SplatFile # Create a FiftyOne dataset dataset = fo.Dataset(name="splat-test", overwrite=True) # Add samples (update paths as needed) sample1 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png") sample1["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_30000.ply") sample2 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png") sample2["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_7000.ply") sample3 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png") sample3["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_7000.ply") sample4 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png") sample4["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_30000.ply") sample5 = fo.Sample(filepath="FO_dataset/train/reference_image.png") sample5["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_7000.ply") sample6 = fo.Sample(filepath="FO_dataset/train/reference_image.png") sample6["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_30000.ply") sample7 = fo.Sample(filepath="FO_dataset/truck/reference_image.png") sample7["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_7000.ply") sample8 = fo.Sample(filepath="FO_dataset/truck/reference_image.png") sample8["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_30000.ply") # Add samples to the dataset dataset.add_sample(sample1) dataset.add_sample(sample2) dataset.add_sample(sample3) dataset.add_sample(sample4) dataset.add_sample(sample5) dataset.add_sample(sample6) dataset.add_sample(sample7) dataset.add_sample(sample8) # Launch FiftyOne App session = fo.launch_app(dataset, auto=False, port=5152) ``` --- ## **Visualization Results** Below are sample screenshots showcasing the **3D Gaussian Splats reconstructions**: ![Image](https://github.com/user-attachments/assets/7b829255-b61b-4db8-b21c-dcc73796100a) ### **Drjohnson Scene** ![Image](https://github.com/user-attachments/assets/b580e602-9619-4f59-bc6d-95aa6cdeecd7) ### **Playroom Scene** ![Image](https://github.com/user-attachments/assets/989e3e2a-5be5-4ba0-bea6-2db3d2c16fad) https://github.com/user-attachments/assets/1c3d3b6b-2b7b-4e93-8f5c-76a184f51260 ### **Train Scene** ![Image](https://github.com/user-attachments/assets/a50f013d-e263-4e45-82c9-40f1f46ed24f) https://github.com/user-attachments/assets/78ca63f5-1df9-4970-a50c-bfab0ee3615f ### **Truck Scene** ![Image](https://github.com/user-attachments/assets/89094b67-85da-4b16-814b-0dc65270ff5a) --- ## **Research & Applications** This dataset is useful for a variety of **3D vision and AI applications**, including: - **NeRF & Gaussian Splatting Benchmarking** - **3D Scene Understanding & Reconstruction** - **Multi-Modal AI (Images + 3D Point Clouds)** - **Real-Time 3D Rendering Research** --- ## **Citation** If you use this dataset, please cite the original **3D Gaussian Splatting** paper: ```bibtex @article{kerbl2023gsplatting, title={3D Gaussian Splatting for Real-Time Radiance Field Rendering}, author={Kerbl, Bernhard and Kopanas, Georgios and Leimkühler, Thomas and Drettakis, George}, journal={arXiv preprint arXiv:2308.04079}, year={2023} } ``` And also the link of this dataset in hugging Face: https://huggingface.co/datasets/pjramg/gaussian_splatting/ ---