Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -5,31 +5,131 @@ language:
|
|
5 |
pretty_name: FiftyOne_Gaussian_Splatting
|
6 |
---
|
7 |
|
8 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
This dataset consists of Gaussian Splats representations of different real-world scenes, created using the official 3D Gaussian Splatting method. Each scene folder contains:
|
11 |
|
12 |
A reference image representing the scene.
|
13 |
A PLY file stored in a point_cloud_folder, containing the Gaussian Splats reconstruction.
|
14 |
|
15 |
-
### The dataset is structured as follows:
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
FO_dataset/
|
19 |
βββ drjohnson/ # Scene Folder
|
20 |
-
β βββ reference_image.
|
21 |
β βββ point_cloud_folder/
|
22 |
-
β βββ
|
|
|
23 |
βββ playroom/
|
24 |
-
β βββ reference_image.
|
25 |
β βββ point_cloud_folder/
|
26 |
-
β βββ
|
|
|
27 |
βββ train/
|
28 |
-
β βββ reference_image.
|
29 |
β βββ point_cloud_folder/
|
30 |
-
β βββ
|
|
|
31 |
βββ truck/
|
32 |
-
β βββ reference_image.
|
33 |
β βββ point_cloud_folder/
|
34 |
-
β βββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
```
|
|
|
|
|
|
|
|
5 |
pretty_name: FiftyOne_Gaussian_Splatting
|
6 |
---
|
7 |
|
8 |
+
## **Gaussian Splats Dataset**
|
9 |
+
**3D Gaussian Splatting for Real-Time Radiance Field Rendering**
|
10 |
+
|
11 |
+
**Dataset Author**: Paula Ramos
|
12 |
+
**Created Using**: [3D Gaussian Splatting Paper](https://arxiv.org/abs/2308.04079)
|
13 |
+
**Code Repository**: [GitHub - graphdeco-inria/gaussian-splatting](https://github.com/graphdeco-inria/gaussian-splatting)
|
14 |
+
|
15 |
+
|
16 |
+
## **Description**
|
17 |
|
18 |
This dataset consists of Gaussian Splats representations of different real-world scenes, created using the official 3D Gaussian Splatting method. Each scene folder contains:
|
19 |
|
20 |
A reference image representing the scene.
|
21 |
A PLY file stored in a point_cloud_folder, containing the Gaussian Splats reconstruction.
|
22 |
|
|
|
23 |
|
24 |
+
### **Overview**
|
25 |
+
This dataset consists of **Gaussian Splats representations** of different real-world scenes, created using the official **3D Gaussian Splatting method**. Each scene folder contains:
|
26 |
+
- A **reference image** representing the scene.
|
27 |
+
- Two **PLY files** stored in a `point_cloud_folder`, containing the **Gaussian Splats reconstructions at iterations 7000 and 30000**.
|
28 |
+
|
29 |
+
The dataset is structured as follows:
|
30 |
+
```plaintext
|
31 |
FO_dataset/
|
32 |
βββ drjohnson/ # Scene Folder
|
33 |
+
β βββ reference_image.png
|
34 |
β βββ point_cloud_folder/
|
35 |
+
β βββ reconstruction_7000.ply
|
36 |
+
β βββ reconstruction_30000.ply
|
37 |
βββ playroom/
|
38 |
+
β βββ reference_image.png
|
39 |
β βββ point_cloud_folder/
|
40 |
+
β βββ reconstruction_7000.ply
|
41 |
+
β βββ reconstruction_30000.ply
|
42 |
βββ train/
|
43 |
+
β βββ reference_image.png
|
44 |
β βββ point_cloud_folder/
|
45 |
+
β βββ reconstruction_7000.ply
|
46 |
+
β βββ reconstruction_30000.ply
|
47 |
βββ truck/
|
48 |
+
β βββ reference_image.png
|
49 |
β βββ point_cloud_folder/
|
50 |
+
β βββ reconstruction_7000.ply
|
51 |
+
β βββ reconstruction_30000.ply
|
52 |
+
```
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
## **How to Use the Dataset**
|
57 |
+
### **1. Install the Required FiftyOne Plugin**
|
58 |
+
To visualize all `.ply` files using FiftyOne, download the **Gaussian Splats plugin**:
|
59 |
+
```bash
|
60 |
+
!fiftyone plugins download https://github.com/danielgural/ksplats_panel
|
61 |
+
```
|
62 |
+
|
63 |
+
### **2. Load & Visualize the Dataset with FiftyOne**
|
64 |
+
Use the following Python script to **load and explore the dataset** in FiftyOne:
|
65 |
+
|
66 |
+
```python
|
67 |
+
import fiftyone as fo
|
68 |
+
from fiftyone.utils.splats import SplatFile
|
69 |
+
|
70 |
+
# Create a FiftyOne dataset
|
71 |
+
dataset = fo.Dataset(name="splat-test", overwrite=True)
|
72 |
+
|
73 |
+
# Add samples (update paths as needed)
|
74 |
+
sample1 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png")
|
75 |
+
sample1["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_30000.ply")
|
76 |
+
|
77 |
+
sample2 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png")
|
78 |
+
sample2["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_7000.ply")
|
79 |
+
|
80 |
+
sample3 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png")
|
81 |
+
sample3["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_7000.ply")
|
82 |
+
|
83 |
+
sample4 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png")
|
84 |
+
sample4["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_30000.ply")
|
85 |
+
|
86 |
+
sample5 = fo.Sample(filepath="FO_dataset/train/reference_image.png")
|
87 |
+
sample5["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_7000.ply")
|
88 |
+
|
89 |
+
sample6 = fo.Sample(filepath="FO_dataset/train/reference_image.png")
|
90 |
+
sample6["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_30000.ply")
|
91 |
+
|
92 |
+
sample7 = fo.Sample(filepath="FO_dataset/truck/reference_image.png")
|
93 |
+
sample7["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_7000.ply")
|
94 |
+
|
95 |
+
sample8 = fo.Sample(filepath="FO_dataset/truck/reference_image.png")
|
96 |
+
sample8["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_30000.ply")
|
97 |
+
|
98 |
+
# Add samples to the dataset
|
99 |
+
dataset.add_sample(sample1)
|
100 |
+
dataset.add_sample(sample2)
|
101 |
+
dataset.add_sample(sample3)
|
102 |
+
dataset.add_sample(sample4)
|
103 |
+
dataset.add_sample(sample5)
|
104 |
+
dataset.add_sample(sample6)
|
105 |
+
dataset.add_sample(sample7)
|
106 |
+
dataset.add_sample(sample8)
|
107 |
+
|
108 |
+
# Launch FiftyOne App
|
109 |
+
session = fo.launch_app(dataset, auto=False, port=5152)
|
110 |
+
```
|
111 |
+
|
112 |
+
---
|
113 |
+
|
114 |
+
## **Research & Applications**
|
115 |
+
This dataset is useful for a variety of **3D vision and AI applications**, including:
|
116 |
+
- **NeRF & Gaussian Splatting Benchmarking**
|
117 |
+
- **3D Scene Understanding & Reconstruction**
|
118 |
+
- **Multi-Modal AI (Images + 3D Point Clouds)**
|
119 |
+
- **Real-Time 3D Rendering Research**
|
120 |
+
|
121 |
+
---
|
122 |
+
|
123 |
+
## **Citation**
|
124 |
+
If you use this dataset, please cite the original **3D Gaussian Splatting** paper:
|
125 |
+
```bibtex
|
126 |
+
@article{kerbl2023gsplatting,
|
127 |
+
title={3D Gaussian Splatting for Real-Time Radiance Field Rendering},
|
128 |
+
author={Kerbl, Bernhard and Kopanas, Georgios and LeimkΓΌhler, Thomas and Drettakis, George},
|
129 |
+
journal={arXiv preprint arXiv:2308.04079},
|
130 |
+
year={2023}
|
131 |
+
}
|
132 |
```
|
133 |
+
And also the link of this dataset in hugging Face
|
134 |
+
---
|
135 |
+
|