Datasets:

Modalities:
3D
Image
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
pjramg commited on
Commit
a3bb777
Β·
verified Β·
1 Parent(s): ed0588b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -11
README.md CHANGED
@@ -5,31 +5,131 @@ language:
5
  pretty_name: FiftyOne_Gaussian_Splatting
6
  ---
7
 
8
- ## Description
 
 
 
 
 
 
 
 
9
 
10
  This dataset consists of Gaussian Splats representations of different real-world scenes, created using the official 3D Gaussian Splatting method. Each scene folder contains:
11
 
12
  A reference image representing the scene.
13
  A PLY file stored in a point_cloud_folder, containing the Gaussian Splats reconstruction.
14
 
15
- ### The dataset is structured as follows:
16
 
17
- ```
 
 
 
 
 
 
18
  FO_dataset/
19
  │── drjohnson/ # Scene Folder
20
- β”‚ β”œβ”€β”€ reference_image.jpg
21
  β”‚ β”œβ”€β”€ point_cloud_folder/
22
- β”‚ β”œβ”€β”€ reconstruction.ply
 
23
  │── playroom/
24
- β”‚ β”œβ”€β”€ reference_image.jpg
25
  β”‚ β”œβ”€β”€ point_cloud_folder/
26
- β”‚ β”œβ”€β”€ reconstruction.ply
 
27
  │── train/
28
- β”‚ β”œβ”€β”€ reference_image.jpg
29
  β”‚ β”œβ”€β”€ point_cloud_folder/
30
- β”‚ β”œβ”€β”€ reconstruction.ply
 
31
  │── truck/
32
- β”‚ β”œβ”€β”€ reference_image.jpg
33
  β”‚ β”œβ”€β”€ point_cloud_folder/
34
- β”‚ β”œβ”€β”€ reconstruction.ply
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ```
 
 
 
 
5
  pretty_name: FiftyOne_Gaussian_Splatting
6
  ---
7
 
8
+ ## **Gaussian Splats Dataset**
9
+ **3D Gaussian Splatting for Real-Time Radiance Field Rendering**
10
+
11
+ **Dataset Author**: Paula Ramos
12
+ **Created Using**: [3D Gaussian Splatting Paper](https://arxiv.org/abs/2308.04079)
13
+ **Code Repository**: [GitHub - graphdeco-inria/gaussian-splatting](https://github.com/graphdeco-inria/gaussian-splatting)
14
+
15
+
16
+ ## **Description**
17
 
18
  This dataset consists of Gaussian Splats representations of different real-world scenes, created using the official 3D Gaussian Splatting method. Each scene folder contains:
19
 
20
  A reference image representing the scene.
21
  A PLY file stored in a point_cloud_folder, containing the Gaussian Splats reconstruction.
22
 
 
23
 
24
+ ### **Overview**
25
+ This dataset consists of **Gaussian Splats representations** of different real-world scenes, created using the official **3D Gaussian Splatting method**. Each scene folder contains:
26
+ - A **reference image** representing the scene.
27
+ - Two **PLY files** stored in a `point_cloud_folder`, containing the **Gaussian Splats reconstructions at iterations 7000 and 30000**.
28
+
29
+ The dataset is structured as follows:
30
+ ```plaintext
31
  FO_dataset/
32
  │── drjohnson/ # Scene Folder
33
+ β”‚ β”œβ”€β”€ reference_image.png
34
  β”‚ β”œβ”€β”€ point_cloud_folder/
35
+ β”‚ β”œβ”€β”€ reconstruction_7000.ply
36
+ β”‚ └── reconstruction_30000.ply
37
  │── playroom/
38
+ β”‚ β”œβ”€β”€ reference_image.png
39
  β”‚ β”œβ”€β”€ point_cloud_folder/
40
+ β”‚ β”œβ”€β”€ reconstruction_7000.ply
41
+ β”‚ └── reconstruction_30000.ply
42
  │── train/
43
+ β”‚ β”œβ”€β”€ reference_image.png
44
  β”‚ β”œβ”€β”€ point_cloud_folder/
45
+ β”‚ β”œβ”€β”€ reconstruction_7000.ply
46
+ β”‚ └── reconstruction_30000.ply
47
  │── truck/
48
+ β”‚ β”œβ”€β”€ reference_image.png
49
  β”‚ β”œβ”€β”€ point_cloud_folder/
50
+ β”‚ β”œβ”€β”€ reconstruction_7000.ply
51
+ β”‚ └── reconstruction_30000.ply
52
+ ```
53
+
54
+ ---
55
+
56
+ ## **How to Use the Dataset**
57
+ ### **1. Install the Required FiftyOne Plugin**
58
+ To visualize all `.ply` files using FiftyOne, download the **Gaussian Splats plugin**:
59
+ ```bash
60
+ !fiftyone plugins download https://github.com/danielgural/ksplats_panel
61
+ ```
62
+
63
+ ### **2. Load & Visualize the Dataset with FiftyOne**
64
+ Use the following Python script to **load and explore the dataset** in FiftyOne:
65
+
66
+ ```python
67
+ import fiftyone as fo
68
+ from fiftyone.utils.splats import SplatFile
69
+
70
+ # Create a FiftyOne dataset
71
+ dataset = fo.Dataset(name="splat-test", overwrite=True)
72
+
73
+ # Add samples (update paths as needed)
74
+ sample1 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png")
75
+ sample1["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_30000.ply")
76
+
77
+ sample2 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png")
78
+ sample2["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_7000.ply")
79
+
80
+ sample3 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png")
81
+ sample3["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_7000.ply")
82
+
83
+ sample4 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png")
84
+ sample4["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_30000.ply")
85
+
86
+ sample5 = fo.Sample(filepath="FO_dataset/train/reference_image.png")
87
+ sample5["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_7000.ply")
88
+
89
+ sample6 = fo.Sample(filepath="FO_dataset/train/reference_image.png")
90
+ sample6["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_30000.ply")
91
+
92
+ sample7 = fo.Sample(filepath="FO_dataset/truck/reference_image.png")
93
+ sample7["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_7000.ply")
94
+
95
+ sample8 = fo.Sample(filepath="FO_dataset/truck/reference_image.png")
96
+ sample8["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_30000.ply")
97
+
98
+ # Add samples to the dataset
99
+ dataset.add_sample(sample1)
100
+ dataset.add_sample(sample2)
101
+ dataset.add_sample(sample3)
102
+ dataset.add_sample(sample4)
103
+ dataset.add_sample(sample5)
104
+ dataset.add_sample(sample6)
105
+ dataset.add_sample(sample7)
106
+ dataset.add_sample(sample8)
107
+
108
+ # Launch FiftyOne App
109
+ session = fo.launch_app(dataset, auto=False, port=5152)
110
+ ```
111
+
112
+ ---
113
+
114
+ ## **Research & Applications**
115
+ This dataset is useful for a variety of **3D vision and AI applications**, including:
116
+ - **NeRF & Gaussian Splatting Benchmarking**
117
+ - **3D Scene Understanding & Reconstruction**
118
+ - **Multi-Modal AI (Images + 3D Point Clouds)**
119
+ - **Real-Time 3D Rendering Research**
120
+
121
+ ---
122
+
123
+ ## **Citation**
124
+ If you use this dataset, please cite the original **3D Gaussian Splatting** paper:
125
+ ```bibtex
126
+ @article{kerbl2023gsplatting,
127
+ title={3D Gaussian Splatting for Real-Time Radiance Field Rendering},
128
+ author={Kerbl, Bernhard and Kopanas, Georgios and LeimkΓΌhler, Thomas and Drettakis, George},
129
+ journal={arXiv preprint arXiv:2308.04079},
130
+ year={2023}
131
+ }
132
  ```
133
+ And also the link of this dataset in hugging Face
134
+ ---
135
+