Vadim Alperovich
commited on
Commit
·
53340f9
1
Parent(s):
b939b29
Create 20ng.py
Browse files
20ng.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Lint as: python3
|
2 |
+
"""20ng question classification dataset."""
|
3 |
+
|
4 |
+
|
5 |
+
import csv
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
from datasets.tasks import TextClassification
|
9 |
+
|
10 |
+
|
11 |
+
_DESCRIPTION = """\
|
12 |
+
This data collection contains all the data used in our learning question classification experiments(see [1]), which has question class definitions, the training and testing question sets, examples of preprocessing the questions, feature definition scripts and examples of semantically related word features.
|
13 |
+
This work has been done by Xin Li and Dan Roth and supported by [2].
|
14 |
+
"""
|
15 |
+
|
16 |
+
_CITATION = """"""
|
17 |
+
|
18 |
+
_TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/20ng/raw/main/train.csv"
|
19 |
+
_TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/20ng/raw/main/test.csv"
|
20 |
+
_VALID_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/20ng/raw/main/test.csv"
|
21 |
+
|
22 |
+
|
23 |
+
CATEGORY_MAPPING = {'comp.sys.mac.hardware': 0,
|
24 |
+
'comp.graphics': 1,
|
25 |
+
'sci.space': 2,
|
26 |
+
'talk.politics.guns': 3,
|
27 |
+
'sci.med': 4,
|
28 |
+
'comp.sys.ibm.pc.hardware': 5,
|
29 |
+
'comp.os.ms-windows.misc': 6,
|
30 |
+
'rec.motorcycles': 7,
|
31 |
+
'misc.forsale': 8,
|
32 |
+
'alt.atheism': 9,
|
33 |
+
'rec.autos': 10,
|
34 |
+
'sci.electronics': 11,
|
35 |
+
'comp.windows.x': 12,
|
36 |
+
'rec.sport.hockey': 13,
|
37 |
+
'rec.sport.baseball': 14,
|
38 |
+
'talk.politics.mideast': 15,
|
39 |
+
'sci.crypt': 16,
|
40 |
+
'soc.religion.christian': 17,
|
41 |
+
'talk.politics.misc': 18,
|
42 |
+
'talk.religion.misc': 19}
|
43 |
+
|
44 |
+
class NG(datasets.GeneratorBasedBuilder):
|
45 |
+
"""20ng classification dataset."""
|
46 |
+
|
47 |
+
def _info(self):
|
48 |
+
return datasets.DatasetInfo(
|
49 |
+
description=_DESCRIPTION,
|
50 |
+
features=datasets.Features(
|
51 |
+
{
|
52 |
+
"text": datasets.Value("string"),
|
53 |
+
"label": datasets.features.ClassLabel(names=list(CATEGORY_MAPPING.keys())),
|
54 |
+
}
|
55 |
+
),
|
56 |
+
homepage="",
|
57 |
+
citation=_CITATION,
|
58 |
+
task_templates=[TextClassification(text_column="text", label_column="label")],
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
63 |
+
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
64 |
+
valid_path = dl_manager.download_and_extract(_VALID_DOWNLOAD_URL)
|
65 |
+
return [
|
66 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
67 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
68 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
|
69 |
+
]
|
70 |
+
|
71 |
+
def _generate_examples(self, filepath):
|
72 |
+
"""Generate examples."""
|
73 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
74 |
+
csv_reader = csv.reader(
|
75 |
+
csv_file, quotechar='"', delimiter=";", quoting=csv.QUOTE_ALL, skipinitialspace=True
|
76 |
+
)
|
77 |
+
# _ = next(csv_reader) # skip header
|
78 |
+
for id_, row in enumerate(csv_reader):
|
79 |
+
text, label = row
|
80 |
+
label = CATEGORY_MAPPING[label]
|
81 |
+
yield id_, {"text": text, "label": label}
|