#!/bin/bash #SBATCH --ntasks=1 #SBATCH --cpus-per-task=40 #SBATCH --job-name=process #SBATCH --nodelist=ilps-cn002 #SBATCH --time=2-00:00:00 #SBATCH --mem=256G pwd conda info --envs source /home/stan1/anaconda3/bin/activate fairseq cd /ivi/ilps/projects/ltl-mt/EC40-dataset mkdir spm_sharded ######################## ------------ IMPORTRANT ------------ ######################## ######## This is an example of how to build a sharded dataset (5 shards) ######## Before run the following code, you should have trained your sentencepiece/subword-mt tokenizer already ######## Then you should encode the dataset using spm, and then use following code to split them to 5 shards #### For eval set, the most easiest way is to add the whole eval-set to all 5 shard fairseq data folder ### note: ha and kab is two exceptions (because of their data-size): you will find them in *SPECIAL* ######################## ------------ IMPORTRANT ------------ ######################## SHARD_SUB_DIR=('0' '1' '2' '3' '4') for i in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[i]} mkdir dataset/spm_sharded/shard${SUB_NUMBER} done HIGH=('de' 'nl' 'fr' 'es' 'ru' 'cs' 'hi' 'bn' 'ar' 'he') MED=('sv' 'da' 'it' 'pt' 'pl' 'bg' 'kn' 'mr' 'mt') #ha LOW=('af' 'lb' 'ro' 'oc' 'uk' 'sr' 'sd' 'gu' 'ti' 'am') ELOW=('no' 'is' 'ast' 'ca' 'be' 'bs' 'ne' 'ur' 'so') #kab SPM_DIR=dataset/spm SPM_SHARD_DIR=dataset/spm_sharded ## ## HIGH 5m each file -> split to 1m for one shard for i in "${!HIGH[@]}"; do LANG=${HIGH[i]} split -l 1000000 $SPM_DIR/train.en-$LANG.en -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.en.shard split -l 1000000 $SPM_DIR/train.en-$LANG.$LANG -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard for j in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[j]} mv $SPM_SHARD_DIR/train.en-$LANG.en.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.en mv $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.$LANG done done # MED 1m each file -> split to 200K for one shard for i in "${!MED[@]}"; do LANG=${MED[i]} split -l 200000 $SPM_DIR/train.en-$LANG.en -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.en.shard split -l 200000 $SPM_DIR/train.en-$LANG.$LANG -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard for j in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[j]} mv $SPM_SHARD_DIR/train.en-$LANG.en.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.en mv $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.$LANG done done # LOW 100k each file -> split to 20k for one shard for i in "${!LOW[@]}"; do LANG=${LOW[i]} split -l 20000 $SPM_DIR/train.en-$LANG.en -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.en.shard split -l 20000 $SPM_DIR/train.en-$LANG.$LANG -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard for j in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[j]} mv $SPM_SHARD_DIR/train.en-$LANG.en.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.en mv $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.$LANG done done ## ELOW 50k each file -> split to 10k for one shard for i in "${!ELOW[@]}"; do LANG=${ELOW[i]} split -l 10000 $SPM_DIR/train.en-$LANG.en -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.en.shard split -l 10000 $SPM_DIR/train.en-$LANG.$LANG -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard for j in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[j]} mv $SPM_SHARD_DIR/train.en-$LANG.en.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.en mv $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.$LANG done done # SPECIAL HA 344000 -> split to 68800 for one shard HA=('ha') for i in "${!HA[@]}"; do LANG=${HA[i]} split -l 68800 $SPM_DIR/train.en-$LANG.en -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.en.shard split -l 68800 $SPM_DIR/train.en-$LANG.$LANG -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard for j in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[j]} mv $SPM_SHARD_DIR/train.en-$LANG.en.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.en mv $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.$LANG done done # SPECIAL HA 18448 -> split to 3690 for one shard KAB=('kab') for i in "${!KAB[@]}"; do LANG=${KAB[i]} split -l 3690 $SPM_DIR/train.en-$LANG.en -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.en.shard split -l 3690 $SPM_DIR/train.en-$LANG.$LANG -d -a 2 $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard for j in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[j]} mv $SPM_SHARD_DIR/train.en-$LANG.en.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.en mv $SPM_SHARD_DIR/train.en-$LANG.$LANG.shard0${SUB_NUMBER} dataset/spm_sharded/shard${SUB_NUMBER}/train.en-$LANG.$LANG done done # ------------------------ 4. Fairseq preparation Sharded ------------------------ # SPM_DATA_DIR=dataset/spm_sharded FAIRSEQ_DIR=dataset/fairseq-data-bin-sharded mkdir ${FAIRSEQ_DIR} cut -f1 dataset/spm/spm_64k.vocab | tail -n +4 | sed "s/$/ 100/g" > ${FAIRSEQ_DIR}/dict.txt SHARD_SUB_DIR=('0' '1' '2' '3' '4') for i in "${!SHARD_SUB_DIR[@]}"; do SUB_NUMBER=${SHARD_SUB_DIR[i]} mkdir $FAIRSEQ_DIR/shard${SUB_NUMBER} done # preprocess with mmap dataset for SHARD in $(seq 0 4); do SRC=en for TGT in bg so ca da be bs mt es uk am hi ro no ti de cs lb pt nl mr is ne ur oc ast ha sv kab gu ar fr ru it pl sr sd he af kn bn; do fairseq-preprocess \ --dataset-impl mmap \ --source-lang ${SRC} \ --target-lang ${TGT} \ --trainpref ${SPM_DATA_DIR}/shard${SHARD}/train.${SRC}-${TGT} \ --destdir ${FAIRSEQ_DIR}/shard${SHARD} \ --thresholdtgt 0 \ --thresholdsrc 0 \ --workers 40 \ --srcdict ${FAIRSEQ_DIR}/dict.txt \ --tgtdict ${FAIRSEQ_DIR}/dict.txt cp ${FAIRSEQ_DIR}/dict.txt ${FAIRSEQ_DIR}/shard${SHARD}/dict.txt done done