|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_DATASETNAME = "sap_wat" |
|
|
|
_LANGUAGES = ["eng", "ind", "zlm", "tha", "vie"] |
|
|
|
_CITATION = """\ |
|
@inproceedings{buschbeck-exel-2020-parallel, |
|
title = "A Parallel Evaluation Data Set of Software Documentation with Document Structure Annotation", |
|
author = "Buschbeck, Bianka and |
|
Exel, Miriam", |
|
editor = "Nakazawa, Toshiaki and |
|
Nakayama, Hideki and |
|
Ding, Chenchen and |
|
Dabre, Raj and |
|
Kunchukuttan, Anoop and |
|
Pa, Win Pa and |
|
Bojar, Ond{\v{r}}ej and |
|
Parida, Shantipriya and |
|
Goto, Isao and |
|
Mino, Hidaya and |
|
Manabe, Hiroshi and |
|
Sudoh, Katsuhito and |
|
Kurohashi, Sadao and |
|
Bhattacharyya, Pushpak", |
|
booktitle = "Proceedings of the 7th Workshop on Asian Translation", |
|
month = dec, |
|
year = "2020", |
|
address = "Suzhou, China", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.wat-1.20", |
|
pages = "160--169", |
|
abstract = "This paper accompanies the software documentation data set for machine translation, a parallel |
|
evaluation data set of data originating from the SAP Help Portal, that we released to the machine translation |
|
community for research purposes. It offers the possibility to tune and evaluate machine translation systems |
|
in the domain of corporate software documentation and contributes to the availability of a wider range of |
|
evaluation scenarios. The data set comprises of the language pairs English to Hindi, Indonesian, Malay and |
|
Thai, and thus also increases the test coverage for the many low-resource language pairs. Unlike most evaluation |
|
data sets that consist of plain parallel text, the segments in this data set come with additional metadata that |
|
describes structural information of the document context. We provide insights into the origin and creation, the |
|
particularities and characteristics of the data set as well as machine translation results.", |
|
} |
|
|
|
""" |
|
|
|
_DESCRIPTION = """The data set originates from the SAP Help Portal that contains documentation for SAP products and user |
|
assistance for product-related questions. The data has been processed in a way that makes it suitable as development and |
|
test data for machine translation purposes. The current language scope is English to Hindi, Indonesian, Japanese, Korean, |
|
Malay, Thai, Vietnamese, Simplified Chinese and Traditional Chinese. For each language pair about 4k segments are available, |
|
split into development and test data. The segments are provided in their document context and are annotated with additional |
|
metadata from the document.""" |
|
|
|
_HOMEPAGE = "https://github.com/SAP/software-documentation-data-set-for-machine-translation" |
|
|
|
_LICENSE = Licenses.CC_BY_NC_4_0.value |
|
|
|
_URLs = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/SAP/software-documentation-data-set-for-machine-translation/master/{split}_data/en{lang}/software_documentation.{split}.en{lang}.{appx}" |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.MACHINE_TRANSLATION |
|
] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_SUBSET = ["id", "ms", "th", "vi"] |
|
|
|
_LOCAL = False |
|
|
|
class SapWatDataset(datasets.GeneratorBasedBuilder): |
|
"""SAP WAT is a software documentation dataset for machine translation. The current language scope is English to Hindi, |
|
Indonesian, Japanese, Korean, Malay, Thai, Vietnamese, Simplified Chinese and Traditional Chinese. Here, we only consider |
|
EN-ID, EN-TH, EN-MS, EN-VI""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_en_{lang}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"SAP WAT source schema for EN-{lang.upper()}", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_en_{lang}", |
|
) |
|
for lang in _SUBSET] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_en_{lang}_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"SAP WAT SEACrowd schema for EN-{lang.upper()}", |
|
schema="seacrowd_t2t", |
|
subset_id=f"{_DATASETNAME}_en_{lang}", |
|
) |
|
for lang in _SUBSET |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "sap_wat_en_id_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string") |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
lang = self.config.name.split("_")[3] |
|
|
|
splits = {datasets.Split.VALIDATION: "dev", datasets.Split.TEST: "test"} |
|
data_urls = { |
|
split: _URLs[_DATASETNAME].format(split=splits[split], lang=lang, appx=lang) for split in splits |
|
} |
|
dl_paths = dl_manager.download(data_urls) |
|
|
|
en_data_urls = { |
|
split: _URLs[_DATASETNAME].format(split=splits[split], lang=lang, appx="en") for split in splits |
|
} |
|
en_dl_paths = dl_manager.download(en_data_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={"filepath": dl_paths[split], "en_filepath": en_dl_paths[split]}, |
|
) |
|
for split in splits |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, en_filepath: Path): |
|
with open(en_filepath, "r") as f: |
|
lines_1 = f.readlines() |
|
with open(filepath, "r") as f: |
|
lines_2 = f.readlines() |
|
|
|
if self.config.schema == "source": |
|
for _id, (line_1, line_2) in enumerate(zip(lines_1, lines_2)): |
|
ex = { |
|
"id": _id, |
|
"text": line_1.strip(), |
|
"label": line_2.strip() |
|
} |
|
yield _id, ex |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
lang = self.config.name.split("_")[3] |
|
lang_name = _LANGUAGES[_SUBSET.index(lang)+1] |
|
|
|
for _id, (line_1, line_2) in enumerate(zip(lines_1, lines_2)): |
|
ex = { |
|
"id": _id, |
|
"text_1": line_1.strip(), |
|
"text_2": line_2.strip(), |
|
"text_1_name": 'eng', |
|
"text_2_name": lang_name, |
|
} |
|
yield _id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |