|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""\ |
|
Data loader implementation for IDENTICv1.0 dataset. |
|
""" |
|
|
|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_ud_data |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{larasati-2012-identic, |
|
title = "{IDENTIC} Corpus: Morphologically Enriched {I}ndonesian-{E}nglish Parallel Corpus", |
|
author = "Larasati, Septina Dian", |
|
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)", |
|
month = may, |
|
year = "2012", |
|
address = "Istanbul, Turkey", |
|
publisher = "European Language Resources Association (ELRA)", |
|
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/644_Paper.pdf", |
|
pages = "902--906", |
|
abstract = "This paper describes the creation process of an Indonesian-English parallel corpus (IDENTIC). |
|
The corpus contains 45,000 sentences collected from different sources in different genres. |
|
Several manual text preprocessing tasks, such as alignment and spelling correction, are applied to the corpus |
|
to assure its quality. We also apply language specific text processing such as tokenization on both sides and |
|
clitic normalization on the Indonesian side. The corpus is available in two different formats: plain', |
|
stored in text format and morphologically enriched', stored in CoNLL format. Some parts of the corpus are |
|
publicly available at the IDENTIC homepage.", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "identic" |
|
|
|
_DESCRIPTION = """\ |
|
IDENTIC is an Indonesian-English parallel corpus for research purposes. |
|
The corpus is a bilingual corpus paired with English. The aim of this work is to build and provide |
|
researchers a proper Indonesian-English textual data set and also to promote research in this language pair. |
|
The corpus contains texts coming from different sources with different genres. |
|
Additionally, the corpus contains tagged texts that follows MorphInd tagset (Larasati et. al., 2011). |
|
""" |
|
|
|
_HOMEPAGE = "https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0005-BF85-F" |
|
|
|
_LICENSE = "CC BY-NC-SA 3.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11858/00-097C-0000-0005-BF85-F/IDENTICv1.0.zip?sequence=1&isAllowed=y", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION, Tasks.POS_TAGGING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_LANGUAGES = ["ind", "eng"] |
|
|
|
_LOCAL = False |
|
|
|
SOURCE_VARIATION = ["raw", "tokenized", "noclitic"] |
|
|
|
tagsets_map = { |
|
|
|
"07<c>_CO-$": "CO-", |
|
"176<c>_CO-$": "CO-", |
|
"F--.^com.<f>_F--$": "X--", |
|
"F--.^xi<x>_X--$.^b<x>_X--$.^2.<c>_CC-$": "X--", |
|
"X--.^0.<c>_CC-$": "X--", |
|
"X--.^a.<x>_X--$": "X--", |
|
"X--.^b.<x>_X--$": "X--", |
|
"X--.^c.<x>_X--$": "X--", |
|
"X--.^com.<f>_F--$": "X--", |
|
"X--.^gammima<x>_X--$.^ag.<f>_F--$": "X--", |
|
"X--.^h.<x>_X--$": "X--", |
|
"X--.^i.<x>_X--$": "X--", |
|
"X--.^j.<x>_X--$": "X--", |
|
"X--.^m.<f>_F--$": "X--", |
|
"X--.^n.<x>_X--$": "X--", |
|
"X--.^net.<x>_X--$": "X--", |
|
"X--.^okezone<x>_X--$.^com.<f>_F--$": "X--", |
|
"X--.^p<x>_X--$.^k.<x>_X--$": "X--", |
|
"X--.^r.<x>_X--$": "X--", |
|
"X--.^s.<x>_X--$": "X--", |
|
"X--.^w.<x>_X--$": "D--", |
|
"^ke+dua": "D--", |
|
"^ke+p": "D--", |
|
"^nya$": "D--", |
|
"duanya<c>_CO-$": "CO-", |
|
} |
|
|
|
|
|
def seacrowd_config_constructor(version, variation=None, task="source", lang="id"): |
|
if variation not in SOURCE_VARIATION: |
|
raise NotImplementedError("'{var}' is not available".format(var=variation)) |
|
|
|
ver = datasets.Version(version) |
|
|
|
if task == "seq_label": |
|
return SEACrowdConfig( |
|
name="identic_{lang}_seacrowd_seq_label".format(lang=lang), |
|
version=ver, |
|
description="IDENTIC {lang} source schema".format(lang=lang), |
|
schema="seacrowd_seq_label", |
|
subset_id="identic", |
|
) |
|
else: |
|
return SEACrowdConfig( |
|
name="identic_{var}_{task}".format(var=variation, task=task), |
|
version=ver, |
|
description="IDENTIC {var} source schema".format(var=variation), |
|
schema=task, |
|
subset_id="identic", |
|
) |
|
|
|
|
|
def load_ud_data_as_pos_tag(filepath, lang): |
|
dataset_source = list(load_ud_data(filepath)) |
|
|
|
if lang == "id": |
|
return [{"id": str(i + 1), "tokens": row["form"], "labels": [tagsets_map.get(pos_tag, pos_tag) for pos_tag in row["xpos"]]} for (i, row) in enumerate(dataset_source)] |
|
else: |
|
return [{"id": str(i + 1), "tokens": row["form"], "labels": row["xpos"]} for (i, row) in enumerate(dataset_source)] |
|
|
|
|
|
class IdenticDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
IDENTIC is an Indonesian-English parallel corpus for research purposes. This dataset is used for ind -> eng translation and vice versa, as well for POS-Tagging task. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
|
|
TAGSETS = [ |
|
|
|
"#", |
|
"$", |
|
"''", |
|
",", |
|
".", |
|
":", |
|
"CC", |
|
"CD", |
|
"DT", |
|
"EX", |
|
"FW", |
|
"IN", |
|
"JJ", |
|
"JJR", |
|
"JJS", |
|
"LS", |
|
"MD", |
|
"NN", |
|
"NNP", |
|
"NNS", |
|
"PDT", |
|
"POS", |
|
"PRP", |
|
"PRP$", |
|
"RB", |
|
"RBR", |
|
"RBS", |
|
"RP", |
|
"SYM", |
|
"TO", |
|
"UH", |
|
"VB", |
|
"VBD", |
|
"VBG", |
|
"VBN", |
|
"VBP", |
|
"VBZ", |
|
"WDT", |
|
"WP", |
|
"WP$", |
|
"WRB", |
|
"``", |
|
|
|
"APP", |
|
"ASP", |
|
"ASS", |
|
"B--", |
|
"CC-", |
|
"CD-", |
|
"CO-", |
|
"D--", |
|
"F--", |
|
"G--", |
|
"H--", |
|
"I--", |
|
"M--", |
|
"NPD", |
|
"NSD", |
|
"NSF", |
|
"NSM", |
|
"O--", |
|
"PP1", |
|
"PP3", |
|
"PS1", |
|
"PS2", |
|
"PS3", |
|
"R--", |
|
"S--", |
|
"T--", |
|
"VPA", |
|
"VPP", |
|
"VSA", |
|
"VSP", |
|
"W--", |
|
"X--", |
|
"Z--", |
|
] |
|
|
|
BUILDER_CONFIGS = ( |
|
[ |
|
SEACrowdConfig( |
|
name="identic_source", |
|
version=SOURCE_VERSION, |
|
description="identic source schema", |
|
schema="source", |
|
subset_id="identic", |
|
), |
|
SEACrowdConfig( |
|
name="identic_id_source", |
|
version=SOURCE_VERSION, |
|
description="identic source schema", |
|
schema="source", |
|
subset_id="identic", |
|
), |
|
SEACrowdConfig( |
|
name="identic_en_source", |
|
version=SOURCE_VERSION, |
|
description="identic source schema", |
|
schema="source", |
|
subset_id="identic", |
|
), |
|
SEACrowdConfig( |
|
name="identic_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description="Identic Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="identic", |
|
), |
|
SEACrowdConfig( |
|
name="identic_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description="Identic Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="identic", |
|
), |
|
] |
|
+ [seacrowd_config_constructor(_SEACROWD_VERSION, var) for var in SOURCE_VARIATION] |
|
+ [seacrowd_config_constructor(_SEACROWD_VERSION, var, "seacrowd_t2t") for var in SOURCE_VARIATION] |
|
+ [seacrowd_config_constructor(_SEACROWD_VERSION, "raw", task="seq_label", lang=lang) for lang in ["en", "id"]] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "identic_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
if self.config.name.endswith("id_source") or self.config.name.endswith("en_source"): |
|
features = datasets.Features( |
|
{ |
|
"id": [datasets.Value("string")], |
|
"form": [datasets.Value("string")], |
|
"lemma": [datasets.Value("string")], |
|
"upos": [datasets.Value("string")], |
|
"xpos": [datasets.Value("string")], |
|
"feats": [datasets.Value("string")], |
|
"head": [datasets.Value("string")], |
|
"deprel": [datasets.Value("string")], |
|
"deps": [datasets.Value("string")], |
|
"misc": [datasets.Value("string")], |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"id_sentence": datasets.Value("string"), |
|
"en_sentence": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.TAGSETS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
base_dir = dl_manager.download_and_extract(urls) |
|
|
|
name_split = self.config.name.split("_") |
|
|
|
lang = name_split[1] if name_split[1] in ["en", "id"] else None |
|
|
|
if name_split[-1] == "source": |
|
if len(name_split) == 2: |
|
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt" |
|
else: |
|
if name_split[1] in ["en", "id"]: |
|
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt" |
|
else: |
|
data_dir = base_dir + "/IDENTICv1.0/identic.{var}.npp.txt".format(var=name_split[1]) |
|
elif name_split[-1] == "t2t": |
|
if len(name_split) == 3: |
|
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt" |
|
else: |
|
data_dir = base_dir + "/IDENTICv1.0/identic.{var}.npp.txt".format(var=name_split[1]) |
|
elif name_split[-1] == "label": |
|
data_dir = base_dir + "/IDENTICv1.0/identic.raw.npp.txt" |
|
else: |
|
raise NotImplementedError("The defined task is not implemented") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": Path(data_dir), "split": datasets.Split.TRAIN, "lang": lang}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str, lang=None) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = self._load_df_from_tsv(filepath) |
|
|
|
if self.config.schema == "source": |
|
if lang is None: |
|
|
|
for id, row in df.iterrows(): |
|
yield id, {"id": row["id"], "id_sentence": row["id_sentence"], "en_sentence": row["en_sentence"]} |
|
else: |
|
|
|
path = filepath.parent / "{lang}.npp.conll".format(lang=lang) |
|
for key, example in enumerate(load_ud_data(path)): |
|
yield key, example |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
for id, row in df.iterrows(): |
|
yield id, { |
|
"id": str(id), |
|
"text_1": row["id_sentence"], |
|
"text_2": row["en_sentence"], |
|
"text_1_name": "ind", |
|
"text_2_name": "eng", |
|
} |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
if lang is None: |
|
lang = "id" |
|
path = filepath.parent / "{lang}.npp.conll".format(lang=lang) |
|
for key, example in enumerate(load_ud_data_as_pos_tag(path, lang=lang)): |
|
yield key, example |
|
|
|
@staticmethod |
|
def _load_df_from_tsv(path): |
|
return pd.read_csv( |
|
path, |
|
sep="\t", |
|
names=["id", "id_sentence", "en_sentence"], |
|
quoting=csv.QUOTE_NONE, |
|
) |
|
|