|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import requests |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = r"""\ |
|
@inproceedings{tiedemann-2012-parallel, |
|
title = "Parallel Data, Tools and Interfaces in {OPUS}", |
|
author = {Tiedemann, J{\"o}rg}, |
|
editor = "Calzolari, Nicoletta and |
|
Choukri, Khalid and |
|
Declerck, Thierry and |
|
Do{\u{g}}an, Mehmet U{\u{g}}ur and |
|
Maegaard, Bente and |
|
Mariani, Joseph and |
|
Moreno, Asuncion and |
|
Odijk, Jan and |
|
Piperidis, Stelios", |
|
booktitle = "Proceedings of the Eighth International Conference on Language |
|
Resources and Evaluation ({LREC}'12)", |
|
month = may, |
|
year = "2012", |
|
address = "Istanbul, Turkey", |
|
publisher = "European Language Resources Association (ELRA)", |
|
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf", |
|
pages = "2214--2218", |
|
abstract = "This paper presents the current status of OPUS, a growing |
|
language resource of parallel corpora and related tools. The focus in OPUS |
|
is to provide freely available data sets in various formats together with |
|
basic annotation to be useful for applications in computational linguistics, |
|
translation studies and cross-linguistic corpus studies. In this paper, we |
|
report about new data sets and their features, additional annotation tools |
|
and models provided from the website and essential interfaces and on-line |
|
services included in the project.", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "gnome" |
|
|
|
_DESCRIPTION = """\ |
|
A parallel corpus of GNOME localization files, which contains the interface text |
|
in the GNU Network Object Model Environment (GNOME) and published by GNOME |
|
translation teams. Text in this dataset is relatively short and technical. |
|
""" |
|
|
|
_HOMEPAGE = "https://opus.nlpl.eu/GNOME/corpus/version/GNOME" |
|
|
|
_LANGUAGES = ["eng", "vie", "mya", "ind", "tha", "tgl", "zlm", "lao"] |
|
_SUBSETS = ["en", "vi", "my", "id", "th", "tl", "ms", "lo"] |
|
_SUBSET_PAIRS = [(src, tgt) for src in _SUBSETS for tgt in _SUBSETS if src != tgt] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"api": "http://opus.nlpl.eu/opusapi/?source={src_lang}&target={tgt_lang}&corpus=GNOME&version=v1", |
|
"data": "https://object.pouta.csc.fi/OPUS-GNOME/v1/moses/{lang_pair}.txt.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class GnomeDataset(datasets.GeneratorBasedBuilder): |
|
"""A parallel corpus of GNOME localization files""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
for subset in _SUBSET_PAIRS: |
|
lang_pair = f"{subset[0]}-{subset[1]}" |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang_pair}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} {lang_pair} source schema", |
|
schema="source", |
|
subset_id=lang_pair, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang_pair}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {lang_pair} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=lang_pair, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = ( |
|
f"{_DATASETNAME}_{_SUBSET_PAIRS[0][0]}-{_SUBSET_PAIRS[0][1]}_source" |
|
) |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"source": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = SCHEMA_TO_FEATURES[ |
|
TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]] |
|
] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
src_lang, tgt_lang = self.config.subset_id.split("-") |
|
api_url = _URLS["api"].format(src_lang=src_lang, tgt_lang=tgt_lang) |
|
data_url = None |
|
|
|
response = requests.get(api_url, timeout=10) |
|
if response: |
|
corpora = response.json()["corpora"] |
|
for corpus in corpora: |
|
if ".txt.zip" in corpus["url"]: |
|
data_url = corpus["url"] |
|
break |
|
else: |
|
raise requests.exceptions.HTTPError( |
|
f"Non-success status code: {response.status_code}" |
|
) |
|
|
|
if not data_url: |
|
raise ValueError(f"No suitable corpus found, check {api_url}") |
|
else: |
|
lang_pair = data_url.split("/")[-1].split(".")[0] |
|
data_dir = Path(dl_manager.download_and_extract(data_url)) |
|
src_file = data_dir / f"GNOME.{lang_pair}.{src_lang}" |
|
tgt_file = data_dir / f"GNOME.{lang_pair}.{tgt_lang}" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"src_file": src_file, |
|
"tgt_file": tgt_file, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, src_file: Path, tgt_file: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(src_file, "r", encoding="utf-8") as src_f, open( |
|
tgt_file, "r", encoding="utf-8" |
|
) as tgt_f: |
|
for idx, (src_line, tgt_line) in enumerate(zip(src_f, tgt_f)): |
|
if self.config.schema == "source": |
|
yield idx, {"source": src_line.strip(), "target": tgt_line.strip()} |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
yield idx, { |
|
"id": str(idx), |
|
"text_1": src_line.strip(), |
|
"text_2": tgt_line.strip(), |
|
"text_1_name": f"source ({src_file.name.split('.')[-1]})", |
|
"text_2_name": f"target ({tgt_file.name.split('.')[-1]})", |
|
} |
|
|