Datasets:
File size: 12,626 Bytes
531820d e37f209 533365c 531820d 6111533 531820d b74633f 531820d f8d24c1 531820d b74633f 531820d b74633f 531820d 52f5754 531820d b74633f 531820d b74633f 531820d b74633f 531820d b74633f 531820d e37f209 7416d2a 0ff7432 7416d2a b74633f 531820d b74633f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import io
import datasets
import constants
import pickle
import logging
from huggingface_hub import snapshot_download, hf_hub_url, hf_hub_download
_CITATION = """\
@InProceedings{mchen-discoeval-19,
title = {Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations},
author = {Mingda Chen and Zewei Chu and Kevin Gimpel},
booktitle = {Proc. of {EMNLP}},
year={2019}
}
"""
_DESCRIPTION = """\
This dataset contains all tasks of the DiscoEval benchmark for sentence representation learning.
"""
_HOMEPAGE = "https://github.com/ZeweiChu/DiscoEval"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"DiscoEval": "https://huggingface.co/.zip",
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class DiscoEvalSentence(datasets.GeneratorBasedBuilder):
"""DiscoEval Benchmark"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=constants.SPARXIV,
version=VERSION,
description="Sentence positioning dataset from arXiv",
),
datasets.BuilderConfig(
name=constants.SPROCSTORY,
version=VERSION,
description="Sentence positioning dataset from ROCStory",
),
datasets.BuilderConfig(
name=constants.SPWIKI,
version=VERSION,
description="Sentence positioning dataset from Wikipedia",
),
datasets.BuilderConfig(
name=constants.DCCHAT,
version=VERSION,
description="Discourse Coherence dataset from chat",
),
datasets.BuilderConfig(
name=constants.DCWIKI,
version=VERSION,
description="Discourse Coherence dataset from Wikipedia",
),
datasets.BuilderConfig(
name=constants.RST,
version=VERSION,
description="The RST Discourse Treebank dataset ",
),
datasets.BuilderConfig(
name=constants.PDTB_E,
version=VERSION,
description="The Penn Discourse Treebank - Explicit dataset.",
),
datasets.BuilderConfig(
name=constants.PDTB_I,
version=VERSION,
description="The Penn Discourse Treebank - Implicit dataset.",
),
datasets.BuilderConfig(
name=constants.SSPABS,
version=VERSION,
description="The SSP dataset.",
),
]
DEFAULT_CONFIG_NAME = constants.SPARXIV # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name in [constants.SPARXIV, constants.SPROCSTORY, constants.SPWIKI]:
features_dict = {
constants.TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(constants.SP_TEXT_COLUMNS + 1)
}
features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.SP_LABELS)
features = datasets.Features(features_dict)
elif self.config.name in [constants.DCCHAT, constants.DCWIKI]:
features_dict = {
constants.TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(constants.DC_TEXT_COLUMNS + 1)
}
features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.DC_LABELS)
features = datasets.Features(features_dict)
elif self.config.name in [constants.RST]:
features_dict = {
constants.TEXT_COLUMN_NAME[i]: [datasets.Value('string')]
for i in range(constants.RST_TEXT_COLUMNS + 1)
}
features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.RST_LABELS)
features = datasets.Features(features_dict)
elif self.config.name in [constants.PDTB_E]:
features_dict = {
constants.TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(constants.PDTB_E_TEXT_COLUMNS + 1)
}
features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.PDTB_E_LABELS)
features = datasets.Features(features_dict)
elif self.config.name in [constants.PDTB_I]:
features_dict = {
constants.TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(constants.PDTB_I_TEXT_COLUMNS + 1)
}
features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.PDTB_I_LABELS)
features = datasets.Features(features_dict)
elif self.config.name in [constants.SSPABS]:
features_dict = {
constants.TEXT_COLUMN_NAME[i]: datasets.Value('string')
for i in range(constants.SSPABS_TEXT_COLUMNS + 1)
}
features_dict[constants.LABEL_NAME] = datasets.ClassLabel(names=constants.SSPABS_LABELS)
features = datasets.Features(features_dict)
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"sentence": datasets.Value("string"),
"option2": datasets.Value("string"),
"second_domain_answer": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
# data_dir = dl_manager.download_and_extract(urls)
data_dir = ''
train_name = ''
valid_name = ''
test_name = ''
if self.config.name in [constants.SPARXIV, constants.SPROCSTORY, constants.SPWIKI]:
data_dir = constants.SP_DATA_DIR + "/" + constants.SP_DIRS[self.config.name]
train_name = constants.SP_TRAIN_NAME
valid_name = constants.SP_VALID_NAME
test_name = constants.SP_TEST_NAME
elif self.config.name in [constants.BSOARXIV, constants.BSOWIKI, constants.BSOROCSTORY]:
data_dir = constants.BSO_DATA_DIR + "/" + constants.BSO_DIRS[self.config.name]
train_name = constants.BSO_TRAIN_NAME
valid_name = constants.BSO_VALID_NAME
test_name = constants.BSO_TEST_NAME
elif self.config.name in [constants.DCCHAT, constants.DCWIKI]:
data_dir = constants.DC_DATA_DIR + "/" + constants.DC_DIRS[self.config.name]
train_name = constants.DC_TRAIN_NAME
valid_name = constants.DC_VALID_NAME
test_name = constants.DC_TEST_NAME
elif self.config.name in [constants.RST]:
data_dir = constants.RST_DATA_DIR
train_name = constants.RST_TRAIN_NAME
valid_name = constants.RST_VALID_NAME
test_name = constants.RST_TEST_NAME
elif self.config.name in [constants.PDTB_E, constants.PDTB_I]:
data_dir = os.path.join(constants.PDTB_DATA_DIR, constants.PDTB_DIRS[self.config.name])
train_name = constants.PDTB_TRAIN_NAME
valid_name = constants.PDTB_VALID_NAME
test_name = constants.PDTB_TEST_NAME
elif self.config.name in [constants.SSPABS]:
data_dir = constants.SSPABS_DATA_DIR
train_name = constants.SSPABS_TRAIN_NAME
valid_name = constants.SSPABS_VALID_NAME
test_name = constants.SSPABS_TEST_NAME
urls_to_download = {
"train": data_dir + "/" + train_name,
"valid": data_dir + "/" + valid_name,
"test": data_dir + "/" + test_name,
}
logger = logging.getLogger(__name__)
data_dirs = dl_manager.download_and_extract(urls_to_download)
logger.info(f"Data directories: {data_dirs}")
downloaded_files = dl_manager.download_and_extract(data_dirs)
logger.info(f"Downloading Completed")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files['valid'],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files['test'],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
logger = logging.getLogger(__name__)
logger.info(f"Current working dir: {os.getcwd()}")
logger.info("generating examples from = %s", filepath)
print(f"Current working dir: {os.getcwd()}")
print(f"Current working dir: {os.listdir(os.getcwd())}")
if self.config.name in [constants.RST]:
data = pickle.load(open(filepath, "rb"))
for key, line in enumerate(data):
example = {constants.TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])}
example[constants.LABEL_NAME] = line[0]
yield key, example
else:
with io.open(filepath, mode='r', encoding='utf-8') as f:
for key, line in enumerate(f):
line = line.strip().split("\t")
example = {constants.TEXT_COLUMN_NAME[i]: sent for i, sent in enumerate(line[1:])}
example[constants.LABEL_NAME] = line[0]
yield key, example
|