Upload 2 files
Browse files- xtts_my_model.py +249 -0
- xtts_train.py +401 -0
xtts_my_model.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import librosa.display
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import os
|
11 |
+
import torch
|
12 |
+
import torchaudio
|
13 |
+
import traceback
|
14 |
+
from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list
|
15 |
+
from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt
|
16 |
+
|
17 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
18 |
+
from TTS.tts.models.xtts import Xtts
|
19 |
+
|
20 |
+
|
21 |
+
def clear_gpu_cache():
|
22 |
+
# clear the GPU cache
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
torch.cuda.empty_cache()
|
25 |
+
|
26 |
+
XTTS_MODEL = None
|
27 |
+
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
|
28 |
+
global XTTS_MODEL
|
29 |
+
clear_gpu_cache()
|
30 |
+
if not xtts_checkpoint or not xtts_config or not xtts_vocab:
|
31 |
+
return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
|
32 |
+
config = XttsConfig()
|
33 |
+
config.load_json(xtts_config)
|
34 |
+
XTTS_MODEL = Xtts.init_from_config(config)
|
35 |
+
print("Loading XTTS model! ")
|
36 |
+
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
XTTS_MODEL.cuda()
|
39 |
+
|
40 |
+
print("Model Loaded!")
|
41 |
+
return "Model Loaded!"
|
42 |
+
|
43 |
+
def run_tts(lang, tts_text, speaker_audio_file):
|
44 |
+
if XTTS_MODEL is None or not speaker_audio_file:
|
45 |
+
return "You need to run the previous step to load the model !!", None, None
|
46 |
+
|
47 |
+
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
|
48 |
+
out = XTTS_MODEL.inference(
|
49 |
+
text=tts_text,
|
50 |
+
language=lang,
|
51 |
+
gpt_cond_latent=gpt_cond_latent,
|
52 |
+
speaker_embedding=speaker_embedding,
|
53 |
+
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
|
54 |
+
length_penalty=XTTS_MODEL.config.length_penalty,
|
55 |
+
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
|
56 |
+
top_k=XTTS_MODEL.config.top_k,
|
57 |
+
top_p=XTTS_MODEL.config.top_p,
|
58 |
+
)
|
59 |
+
|
60 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
61 |
+
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
|
62 |
+
out_path = fp.name
|
63 |
+
torchaudio.save(out_path, out["wav"], 24000)
|
64 |
+
|
65 |
+
return "Speech generated !", out_path, speaker_audio_file
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# define a logger to redirect
|
71 |
+
class Logger:
|
72 |
+
def __init__(self, filename="log.out"):
|
73 |
+
self.log_file = filename
|
74 |
+
self.terminal = sys.stdout
|
75 |
+
self.log = open(self.log_file, "w")
|
76 |
+
|
77 |
+
def write(self, message):
|
78 |
+
self.terminal.write(message)
|
79 |
+
self.log.write(message)
|
80 |
+
|
81 |
+
def flush(self):
|
82 |
+
self.terminal.flush()
|
83 |
+
self.log.flush()
|
84 |
+
|
85 |
+
def isatty(self):
|
86 |
+
return False
|
87 |
+
|
88 |
+
# redirect stdout and stderr to a file
|
89 |
+
sys.stdout = Logger()
|
90 |
+
sys.stderr = sys.stdout
|
91 |
+
|
92 |
+
|
93 |
+
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
94 |
+
import logging
|
95 |
+
logging.basicConfig(
|
96 |
+
level=logging.INFO,
|
97 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
98 |
+
handlers=[
|
99 |
+
logging.StreamHandler(sys.stdout)
|
100 |
+
]
|
101 |
+
)
|
102 |
+
|
103 |
+
def read_logs():
|
104 |
+
sys.stdout.flush()
|
105 |
+
with open(sys.stdout.log_file, "r") as f:
|
106 |
+
return f.read()
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
|
111 |
+
parser = argparse.ArgumentParser(
|
112 |
+
description="""XTTS fine-tuning demo\n\n"""
|
113 |
+
"""
|
114 |
+
Example runs:
|
115 |
+
python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port
|
116 |
+
""",
|
117 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--port",
|
121 |
+
type=int,
|
122 |
+
help="Port to run the gradio demo. Default: 5003",
|
123 |
+
default=5003,
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--out_path",
|
127 |
+
type=str,
|
128 |
+
help="Output path (where data and checkpoints will be saved) Default: /tmp/xtts_ft/",
|
129 |
+
default="/tmp/xtts_ft/",
|
130 |
+
)
|
131 |
+
|
132 |
+
parser.add_argument(
|
133 |
+
"--num_epochs",
|
134 |
+
type=int,
|
135 |
+
help="Number of epochs to train. Default: 10",
|
136 |
+
default=10,
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--batch_size",
|
140 |
+
type=int,
|
141 |
+
help="Batch size. Default: 4",
|
142 |
+
default=4,
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--grad_acumm",
|
146 |
+
type=int,
|
147 |
+
help="Grad accumulation steps. Default: 1",
|
148 |
+
default=1,
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--max_audio_length",
|
152 |
+
type=int,
|
153 |
+
help="Max permitted audio size in seconds. Default: 11",
|
154 |
+
default=11,
|
155 |
+
)
|
156 |
+
|
157 |
+
args = parser.parse_args()
|
158 |
+
|
159 |
+
language_names = {
|
160 |
+
"en": "English",
|
161 |
+
"es": "Spanish",
|
162 |
+
"fr": "French",
|
163 |
+
"de": "German",
|
164 |
+
"it": "Italian",
|
165 |
+
"pt": "Portuguese",
|
166 |
+
"pl": "Polish",
|
167 |
+
"tr": "Turkish",
|
168 |
+
"ru": "Russian",
|
169 |
+
"nl": "Dutch",
|
170 |
+
"cs": "Czech",
|
171 |
+
"ar": "Arabic",
|
172 |
+
"zh": "Chinese",
|
173 |
+
"hu": "Hungarian",
|
174 |
+
"ko": "Korean",
|
175 |
+
"ja": "Japanese",
|
176 |
+
}
|
177 |
+
|
178 |
+
with gr.Blocks() as demo:
|
179 |
+
with gr.Tab("Inference"):
|
180 |
+
with gr.Row():
|
181 |
+
with gr.Column() as col1:
|
182 |
+
xtts_checkpoint = gr.Textbox(
|
183 |
+
label="XTTS checkpoint path:",
|
184 |
+
value="/content/Modelo/best_model.pth",
|
185 |
+
)
|
186 |
+
xtts_config = gr.Textbox(
|
187 |
+
label="XTTS config path:",
|
188 |
+
value="/content/Modelo/config.json",
|
189 |
+
)
|
190 |
+
|
191 |
+
xtts_vocab = gr.Textbox(
|
192 |
+
label="XTTS vocab path:",
|
193 |
+
value="/content/Modelo/vocab.json",
|
194 |
+
)
|
195 |
+
progress_load = gr.Label(
|
196 |
+
label="Progress:"
|
197 |
+
)
|
198 |
+
load_btn = gr.Button(value="Load Fine-tuned XTTS model")
|
199 |
+
|
200 |
+
with gr.Column() as col2:
|
201 |
+
speaker_reference_audio = gr.File(
|
202 |
+
file_count="multiple",
|
203 |
+
label="Speaker reference audio (Supported formats: wav, mp3, and flac)",
|
204 |
+
)
|
205 |
+
tts_language = gr.Dropdown(
|
206 |
+
label="Language",
|
207 |
+
value="en",
|
208 |
+
choices=list(zip(language_names.values(), language_names.keys()))
|
209 |
+
)
|
210 |
+
tts_text = gr.Textbox(
|
211 |
+
label="Input Text.",
|
212 |
+
value="This model sounds really good and above all, it's reasonably fast.",
|
213 |
+
)
|
214 |
+
tts_btn = gr.Button(value="Step 4 - Inference")
|
215 |
+
|
216 |
+
with gr.Column() as col3:
|
217 |
+
progress_gen = gr.Label(
|
218 |
+
label="Progress:"
|
219 |
+
)
|
220 |
+
tts_output_audio = gr.Audio(label="Generated Audio.")
|
221 |
+
reference_audio = gr.Audio(label="Reference audio used.")
|
222 |
+
|
223 |
+
|
224 |
+
load_btn.click(
|
225 |
+
fn=load_model,
|
226 |
+
inputs=[
|
227 |
+
xtts_checkpoint,
|
228 |
+
xtts_config,
|
229 |
+
xtts_vocab
|
230 |
+
],
|
231 |
+
outputs=[progress_load],
|
232 |
+
)
|
233 |
+
|
234 |
+
tts_btn.click(
|
235 |
+
fn=run_tts,
|
236 |
+
inputs=[
|
237 |
+
tts_language,
|
238 |
+
tts_text,
|
239 |
+
speaker_reference_audio,
|
240 |
+
],
|
241 |
+
outputs=[progress_gen, tts_output_audio, reference_audio],
|
242 |
+
)
|
243 |
+
|
244 |
+
demo.launch(
|
245 |
+
share=True,
|
246 |
+
debug=False,
|
247 |
+
server_port=args.port,
|
248 |
+
server_name="0.0.0.0"
|
249 |
+
)
|
xtts_train.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import librosa.display
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import os
|
11 |
+
import torch
|
12 |
+
import torchaudio
|
13 |
+
import traceback
|
14 |
+
from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list
|
15 |
+
from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt
|
16 |
+
|
17 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
18 |
+
from TTS.tts.models.xtts import Xtts
|
19 |
+
|
20 |
+
|
21 |
+
def clear_gpu_cache():
|
22 |
+
# clear the GPU cache
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
torch.cuda.empty_cache()
|
25 |
+
|
26 |
+
XTTS_MODEL = None
|
27 |
+
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
|
28 |
+
global XTTS_MODEL
|
29 |
+
clear_gpu_cache()
|
30 |
+
if not xtts_checkpoint or not xtts_config or not xtts_vocab:
|
31 |
+
return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
|
32 |
+
config = XttsConfig()
|
33 |
+
config.load_json(xtts_config)
|
34 |
+
XTTS_MODEL = Xtts.init_from_config(config)
|
35 |
+
print("Loading XTTS model! ")
|
36 |
+
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
XTTS_MODEL.cuda()
|
39 |
+
|
40 |
+
print("Model Loaded!")
|
41 |
+
return "Model Loaded!"
|
42 |
+
|
43 |
+
def run_tts(lang, tts_text, speaker_audio_file):
|
44 |
+
if XTTS_MODEL is None or not speaker_audio_file:
|
45 |
+
return "You need to run the previous step to load the model !!", None, None
|
46 |
+
|
47 |
+
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
|
48 |
+
out = XTTS_MODEL.inference(
|
49 |
+
text=tts_text,
|
50 |
+
language=lang,
|
51 |
+
gpt_cond_latent=gpt_cond_latent,
|
52 |
+
speaker_embedding=speaker_embedding,
|
53 |
+
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
|
54 |
+
length_penalty=XTTS_MODEL.config.length_penalty,
|
55 |
+
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
|
56 |
+
top_k=XTTS_MODEL.config.top_k,
|
57 |
+
top_p=XTTS_MODEL.config.top_p,
|
58 |
+
)
|
59 |
+
|
60 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
61 |
+
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
|
62 |
+
out_path = fp.name
|
63 |
+
torchaudio.save(out_path, out["wav"], 24000)
|
64 |
+
|
65 |
+
return "Speech generated !", out_path, speaker_audio_file
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# define a logger to redirect
|
71 |
+
class Logger:
|
72 |
+
def __init__(self, filename="log.out"):
|
73 |
+
self.log_file = filename
|
74 |
+
self.terminal = sys.stdout
|
75 |
+
self.log = open(self.log_file, "w")
|
76 |
+
|
77 |
+
def write(self, message):
|
78 |
+
self.terminal.write(message)
|
79 |
+
self.log.write(message)
|
80 |
+
|
81 |
+
def flush(self):
|
82 |
+
self.terminal.flush()
|
83 |
+
self.log.flush()
|
84 |
+
|
85 |
+
def isatty(self):
|
86 |
+
return False
|
87 |
+
|
88 |
+
# redirect stdout and stderr to a file
|
89 |
+
sys.stdout = Logger()
|
90 |
+
sys.stderr = sys.stdout
|
91 |
+
|
92 |
+
|
93 |
+
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
94 |
+
import logging
|
95 |
+
logging.basicConfig(
|
96 |
+
level=logging.INFO,
|
97 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
98 |
+
handlers=[
|
99 |
+
logging.StreamHandler(sys.stdout)
|
100 |
+
]
|
101 |
+
)
|
102 |
+
|
103 |
+
def read_logs():
|
104 |
+
sys.stdout.flush()
|
105 |
+
with open(sys.stdout.log_file, "r") as f:
|
106 |
+
return f.read()
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
|
111 |
+
parser = argparse.ArgumentParser(
|
112 |
+
description="""XTTS fine-tuning demo\n\n"""
|
113 |
+
"""
|
114 |
+
Example runs:
|
115 |
+
python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port
|
116 |
+
""",
|
117 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--port",
|
121 |
+
type=int,
|
122 |
+
help="Port to run the gradio demo. Default: 5003",
|
123 |
+
default=5003,
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--out_path",
|
127 |
+
type=str,
|
128 |
+
help="Output path (where data and checkpoints will be saved) Default: /tmp/xtts_ft/",
|
129 |
+
default="/tmp/xtts_ft/",
|
130 |
+
)
|
131 |
+
|
132 |
+
parser.add_argument(
|
133 |
+
"--num_epochs",
|
134 |
+
type=int,
|
135 |
+
help="Number of epochs to train. Default: 10",
|
136 |
+
default=10,
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--batch_size",
|
140 |
+
type=int,
|
141 |
+
help="Batch size. Default: 4",
|
142 |
+
default=4,
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--grad_acumm",
|
146 |
+
type=int,
|
147 |
+
help="Grad accumulation steps. Default: 1",
|
148 |
+
default=1,
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--max_audio_length",
|
152 |
+
type=int,
|
153 |
+
help="Max permitted audio size in seconds. Default: 11",
|
154 |
+
default=11,
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
args = parser.parse_args()
|
159 |
+
|
160 |
+
language_names = {
|
161 |
+
"en": "English",
|
162 |
+
"es": "Spanish",
|
163 |
+
"fr": "French",
|
164 |
+
"de": "German",
|
165 |
+
"it": "Italian",
|
166 |
+
"pt": "Portuguese",
|
167 |
+
"pl": "Polish",
|
168 |
+
"tr": "Turkish",
|
169 |
+
"ru": "Russian",
|
170 |
+
"nl": "Dutch",
|
171 |
+
"cs": "Czech",
|
172 |
+
"ar": "Arabic",
|
173 |
+
"zh": "Chinese",
|
174 |
+
"hu": "Hungarian",
|
175 |
+
"ko": "Korean",
|
176 |
+
"ja": "Japanese",
|
177 |
+
}
|
178 |
+
|
179 |
+
with gr.Blocks() as demo:
|
180 |
+
with gr.Tab("1 - Data processing"):
|
181 |
+
out_path = gr.Textbox(
|
182 |
+
label="Output path (where data and checkpoints will be saved):",
|
183 |
+
value=args.out_path,
|
184 |
+
)
|
185 |
+
# upload_file = gr.Audio(
|
186 |
+
# sources="upload",
|
187 |
+
# label="Select here the audio files that you want to use for XTTS trainining !",
|
188 |
+
# type="filepath",
|
189 |
+
# )
|
190 |
+
upload_file = gr.File(
|
191 |
+
file_count="multiple",
|
192 |
+
label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)",
|
193 |
+
)
|
194 |
+
lang = gr.Dropdown(
|
195 |
+
label="Dataset Language",
|
196 |
+
value="en",
|
197 |
+
choices=list(zip(language_names.values(), language_names.keys()))
|
198 |
+
)
|
199 |
+
progress_data = gr.Label(
|
200 |
+
label="Progress:"
|
201 |
+
)
|
202 |
+
logs = gr.Textbox(
|
203 |
+
label="Logs:",
|
204 |
+
interactive=False,
|
205 |
+
)
|
206 |
+
demo.load(read_logs, None, logs, every=1)
|
207 |
+
|
208 |
+
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")
|
209 |
+
|
210 |
+
def preprocess_dataset(audio_path, language, out_path, progress=gr.Progress(track_tqdm=True)):
|
211 |
+
clear_gpu_cache()
|
212 |
+
out_path = os.path.join(out_path, "dataset")
|
213 |
+
os.makedirs(out_path, exist_ok=True)
|
214 |
+
if audio_path is None:
|
215 |
+
return "You should provide one or multiple audio files! If you provided it, probably the upload of the files is not finished yet!", "", ""
|
216 |
+
else:
|
217 |
+
try:
|
218 |
+
train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, target_language=language, out_path=out_path, gradio_progress=progress)
|
219 |
+
except:
|
220 |
+
traceback.print_exc()
|
221 |
+
error = traceback.format_exc()
|
222 |
+
return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
|
223 |
+
|
224 |
+
clear_gpu_cache()
|
225 |
+
|
226 |
+
# if audio total len is less than 2 minutes raise an error
|
227 |
+
if audio_total_size < 120:
|
228 |
+
message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
|
229 |
+
print(message)
|
230 |
+
return message, "", ""
|
231 |
+
|
232 |
+
print("Dataset Processed!")
|
233 |
+
return "Dataset Processed!", train_meta, eval_meta
|
234 |
+
|
235 |
+
with gr.Tab("2 - Fine-tuning XTTS Encoder"):
|
236 |
+
train_csv = gr.Textbox(
|
237 |
+
label="Train CSV:",
|
238 |
+
)
|
239 |
+
eval_csv = gr.Textbox(
|
240 |
+
label="Eval CSV:",
|
241 |
+
)
|
242 |
+
num_epochs = gr.Slider(
|
243 |
+
label="Number of epochs:",
|
244 |
+
minimum=1,
|
245 |
+
maximum=100,
|
246 |
+
step=1,
|
247 |
+
value=args.num_epochs,
|
248 |
+
)
|
249 |
+
batch_size = gr.Slider(
|
250 |
+
label="Batch size:",
|
251 |
+
minimum=2,
|
252 |
+
maximum=512,
|
253 |
+
step=1,
|
254 |
+
value=args.batch_size,
|
255 |
+
)
|
256 |
+
grad_acumm = gr.Slider(
|
257 |
+
label="Grad accumulation steps:",
|
258 |
+
minimum=2,
|
259 |
+
maximum=128,
|
260 |
+
step=1,
|
261 |
+
value=args.grad_acumm,
|
262 |
+
)
|
263 |
+
max_audio_length = gr.Slider(
|
264 |
+
label="Max permitted audio size in seconds:",
|
265 |
+
minimum=2,
|
266 |
+
maximum=20,
|
267 |
+
step=1,
|
268 |
+
value=args.max_audio_length,
|
269 |
+
)
|
270 |
+
progress_train = gr.Label(
|
271 |
+
label="Progress:"
|
272 |
+
)
|
273 |
+
logs_tts_train = gr.Textbox(
|
274 |
+
label="Logs:",
|
275 |
+
interactive=False,
|
276 |
+
)
|
277 |
+
demo.load(read_logs, None, logs_tts_train, every=1)
|
278 |
+
train_btn = gr.Button(value="Step 2 - Run the training")
|
279 |
+
|
280 |
+
def train_model(language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
|
281 |
+
clear_gpu_cache()
|
282 |
+
if not train_csv or not eval_csv:
|
283 |
+
return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
|
284 |
+
try:
|
285 |
+
# convert seconds to waveform frames
|
286 |
+
max_audio_length = int(max_audio_length * 22050)
|
287 |
+
config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
|
288 |
+
except:
|
289 |
+
traceback.print_exc()
|
290 |
+
error = traceback.format_exc()
|
291 |
+
return f"The training was interrupted due an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""
|
292 |
+
|
293 |
+
# copy original files to avoid parameters changes issues
|
294 |
+
os.system(f"cp {config_path} {exp_path}")
|
295 |
+
os.system(f"cp {vocab_file} {exp_path}")
|
296 |
+
|
297 |
+
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
|
298 |
+
print("Model training done!")
|
299 |
+
clear_gpu_cache()
|
300 |
+
return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
|
301 |
+
|
302 |
+
with gr.Tab("3 - Inference"):
|
303 |
+
with gr.Row():
|
304 |
+
with gr.Column() as col1:
|
305 |
+
xtts_checkpoint = gr.Textbox(
|
306 |
+
label="XTTS checkpoint path:",
|
307 |
+
value="/content/Modelo/best_model.pth",
|
308 |
+
)
|
309 |
+
xtts_config = gr.Textbox(
|
310 |
+
label="XTTS config path:",
|
311 |
+
value="/content/Modelo/config.json",
|
312 |
+
)
|
313 |
+
|
314 |
+
xtts_vocab = gr.Textbox(
|
315 |
+
label="XTTS vocab path:",
|
316 |
+
value="/content/Modelo/vocab.json",
|
317 |
+
)
|
318 |
+
progress_load = gr.Label(
|
319 |
+
label="Progress:"
|
320 |
+
)
|
321 |
+
load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")
|
322 |
+
|
323 |
+
with gr.Column() as col2:
|
324 |
+
speaker_reference_audio = gr.File(
|
325 |
+
file_count="multiple",
|
326 |
+
label="Speaker reference audio (Supported formats: wav, mp3, and flac)",
|
327 |
+
)
|
328 |
+
tts_language = gr.Dropdown(
|
329 |
+
label="Language",
|
330 |
+
value="en",
|
331 |
+
choices=list(zip(language_names.values(), language_names.keys()))
|
332 |
+
)
|
333 |
+
tts_text = gr.Textbox(
|
334 |
+
label="Input Text.",
|
335 |
+
value="This model sounds really good and above all, it's reasonably fast.",
|
336 |
+
)
|
337 |
+
tts_btn = gr.Button(value="Step 4 - Inference")
|
338 |
+
|
339 |
+
with gr.Column() as col3:
|
340 |
+
progress_gen = gr.Label(
|
341 |
+
label="Progress:"
|
342 |
+
)
|
343 |
+
tts_output_audio = gr.Audio(label="Generated Audio.")
|
344 |
+
reference_audio = gr.Audio(label="Reference audio used.")
|
345 |
+
|
346 |
+
prompt_compute_btn.click(
|
347 |
+
fn=preprocess_dataset,
|
348 |
+
inputs=[
|
349 |
+
upload_file,
|
350 |
+
lang,
|
351 |
+
out_path,
|
352 |
+
],
|
353 |
+
outputs=[
|
354 |
+
progress_data,
|
355 |
+
train_csv,
|
356 |
+
eval_csv,
|
357 |
+
],
|
358 |
+
)
|
359 |
+
|
360 |
+
|
361 |
+
train_btn.click(
|
362 |
+
fn=train_model,
|
363 |
+
inputs=[
|
364 |
+
lang,
|
365 |
+
train_csv,
|
366 |
+
eval_csv,
|
367 |
+
num_epochs,
|
368 |
+
batch_size,
|
369 |
+
grad_acumm,
|
370 |
+
out_path,
|
371 |
+
max_audio_length,
|
372 |
+
],
|
373 |
+
outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
|
374 |
+
)
|
375 |
+
|
376 |
+
load_btn.click(
|
377 |
+
fn=load_model,
|
378 |
+
inputs=[
|
379 |
+
xtts_checkpoint,
|
380 |
+
xtts_config,
|
381 |
+
xtts_vocab
|
382 |
+
],
|
383 |
+
outputs=[progress_load],
|
384 |
+
)
|
385 |
+
|
386 |
+
tts_btn.click(
|
387 |
+
fn=run_tts,
|
388 |
+
inputs=[
|
389 |
+
tts_language,
|
390 |
+
tts_text,
|
391 |
+
speaker_reference_audio,
|
392 |
+
],
|
393 |
+
outputs=[progress_gen, tts_output_audio, reference_audio],
|
394 |
+
)
|
395 |
+
|
396 |
+
demo.launch(
|
397 |
+
share=True,
|
398 |
+
debug=False,
|
399 |
+
server_port=args.port,
|
400 |
+
server_name="0.0.0.0"
|
401 |
+
)
|