File size: 5,457 Bytes
27411b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import pandas as pd
from plotly import graph_objects as go
import plotly.express as px
from viewer.utils import PlotOptions


def parse_merge_runs_to_plot(df, metric_name, merge_method):
    if merge_method == "none":
        return [
            (group["steps"], group[metric_name], f'{runname}-s{seed}')
            for (runname, seed), group in df.groupby(["runname", "seed"])
        ]
    if metric_name not in df.columns:
        return []
    grouped = df.groupby(['runname', 'steps']).agg({metric_name: merge_method}).reset_index()
    return [
        (group["steps"], group[metric_name], runname)
        for (runname,), group in grouped.groupby(["runname"])
    ]


def prepare_plot_data(df: pd.DataFrame, metric_name: str, seed_merge_method: str,
                      plot_options: PlotOptions) -> pd.DataFrame:
    if df is None or "steps" not in df or metric_name not in df.columns:
        return pd.DataFrame()

    df = df.copy().sort_values(by=["steps"])
    plot_data = parse_merge_runs_to_plot(df, metric_name, seed_merge_method)

    # Create DataFrame with all possible steps as index
    all_steps = sorted(set(step for xs, _, _ in plot_data for step in xs))
    result_df = pd.DataFrame(index=all_steps)

    # Populate the DataFrame respecting xs for each series
    for xs, ys, runname in plot_data:
        result_df[runname] = pd.Series(index=xs.values, data=ys.values)

    # Interpolate or keep NaN based on the interpolate flag
    if plot_options.interpolate:
        # this is done per run, as each run is in a diff column
        result_df = result_df.interpolate(method='linear')
    # Apply smoothing if needed
    if plot_options.smoothing > 0:
        result_df = result_df.rolling(window=plot_options.smoothing, min_periods=1).mean()
    if plot_options.pct:
        result_df = result_df * 100

    return result_df


def plot_metric(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict,
                nb_stds: int, language: str = None, barplot: bool = False) -> go.Figure:
    if barplot:
        return plot_metric_barplot(plot_df, metric_name, seed_merge_method, pct, statistics, nb_stds, language)
    return plot_metric_scatter(plot_df, metric_name, seed_merge_method, pct, statistics, nb_stds, language)

def plot_metric_scatter(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict,
                nb_stds: int, language: str = None) -> go.Figure:
    fig = go.Figure()
    if not isinstance(plot_df, pd.DataFrame) or plot_df.empty:
        return fig
    show_error_bars = nb_stds > 0 and not np.isnan(statistics["mean_std"])
    error_value = statistics["mean_std"] * nb_stds * (100 if pct else 1) if show_error_bars else 0.0

    last_y_values = {runname: plot_df[runname].iloc[-1] for runname in plot_df.columns}
    sorted_runnames = sorted(last_y_values, key=last_y_values.get, reverse=True)
    for runname in sorted_runnames:
        fig.add_trace(
            go.Scatter(x=plot_df.index, y=plot_df[runname], mode='lines+markers', name=runname,
                       hovertemplate=f'%{{y:.2f}} ({runname})<extra></extra>',
                       error_y=dict(
                           type='constant',  # Use a constant error value
                           value=error_value,  # Single error value
                           visible=show_error_bars  # Show error bars
                       ))
        )

    lang_string = f" ({language})" if language else ""

    fig.update_layout(
        title=f"Run comparisons{lang_string}: {metric_name}" +
              (f" ({seed_merge_method} over seeds)" if seed_merge_method != "none" else "") + (f" [%]" if pct else ""),
        xaxis_title="Training steps",
        yaxis_title=metric_name,
        hovermode="x unified"
    )
    return fig


def plot_metric_barplot(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict,
                nb_stds: int, language: str = None) -> go.Figure:
    fig = go.Figure()
    if not isinstance(plot_df, pd.DataFrame) or plot_df.empty:
        return fig

    show_error_bars = nb_stds > 0 and not np.isnan(statistics["mean_std"])
    error_value = statistics["mean_std"] * nb_stds * (100 if pct else 1) if show_error_bars else 0.0

    last_values = {runname: plot_df[runname].iloc[-1] for runname in plot_df.columns}
    sorted_runnames = sorted(last_values, key=last_values.get, reverse=True)

    # Create color map for consistent colors
    colors = px.colors.qualitative.Set1
    color_map = {run: colors[i % len(colors)] for i, run in enumerate(plot_df.columns)}

    fig.add_trace(
        go.Bar(
            x=sorted_runnames,
            y=[last_values[run] for run in sorted_runnames],
            marker_color=[color_map[run] for run in sorted_runnames],
            error_y=dict(
                type='constant',
                value=error_value,
                visible=show_error_bars
            ),
            hovertemplate='%{y:.2f}<extra></extra>'
        )
    )

    lang_string = f" ({language})" if language else ""

    fig.update_layout(
        title=f"Run comparisons{lang_string}: {metric_name}" +
              (f" ({seed_merge_method} over seeds)" if seed_merge_method != "none" else "") + (
                  f" [%]" if pct else ""),
        xaxis_title="Runs",
        yaxis_title=metric_name,
        hovermode="x"
    )
    return fig