from transformers import RobertaTokenizerFast # split the dna seq by len # AAGTGGCAGA -----> AA, GT, GG, CA, GA class DNATokenizerFast(RobertaTokenizerFast): def __init__(self, vocab_file=None, merges_file=None, k_mer=2, stride=1, errors="replace", bos_token="", eos_token="", sep_token="", cls_token="", unk_token="", pad_token="", mask_token="", add_prefix_space=False, **kwargs ): self.k_mer = k_mer self.stride = stride self.model_max_length = 1000000 super().__init__( vocab_file=vocab_file, merges_file=merges_file, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) def cut_and_encode(self, sequence, add_special_tokens): seq_len = ((int)((len(sequence)-self.k_mer) / self.stride)) * self.stride tokens = [sequence[i:i + self.k_mer] for i in range(0, seq_len + 1, self.stride)] token_ids = [self._convert_token_to_id(token) for token in tokens] if add_special_tokens: token_ids = [self.cls_token_id] + token_ids + [self.eos_token_id] return tokens, token_ids def _convert_token_to_id(self, token): index = self._tokenizer.token_to_id(token) if index: return index if token == '': return self.pad_token_id return self.unk_token_id def __call__(self, seq_list, add_special_tokens=False): token_ids_list = [] for seq in seq_list: _, token_ids = self.cut_and_encode(seq, add_special_tokens) token_ids_list.append(token_ids) return {"input_ids": token_ids_list}