|
from transformers import RobertaTokenizerFast |
|
|
|
|
|
|
|
class DNATokenizerFast(RobertaTokenizerFast): |
|
def __init__(self, vocab_file=None, merges_file=None, k_mer=2, stride=1, |
|
errors="replace", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
sep_token="</s>", |
|
cls_token="<s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
mask_token="<mask>", |
|
add_prefix_space=False, |
|
**kwargs |
|
): |
|
self.k_mer = k_mer |
|
self.stride = stride |
|
self.model_max_length = 1000000 |
|
super().__init__( |
|
vocab_file=vocab_file, |
|
merges_file=merges_file, |
|
errors=errors, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
add_prefix_space=add_prefix_space, |
|
**kwargs, |
|
) |
|
|
|
def cut_and_encode(self, sequence, add_special_tokens): |
|
seq_len = ((int)((len(sequence)-self.k_mer) / self.stride)) * self.stride |
|
tokens = [sequence[i:i + self.k_mer] for i in range(0, seq_len + 1, self.stride)] |
|
token_ids = [self._convert_token_to_id(token) for token in tokens] |
|
if add_special_tokens: |
|
token_ids = [self.cls_token_id] + token_ids + [self.eos_token_id] |
|
return tokens, token_ids |
|
|
|
def _convert_token_to_id(self, token): |
|
index = self._tokenizer.token_to_id(token) |
|
if index: |
|
return index |
|
if token == '': |
|
return self.pad_token_id |
|
return self.unk_token_id |
|
|
|
def __call__(self, seq_list, add_special_tokens=False): |
|
token_ids_list = [] |
|
for seq in seq_list: |
|
_, token_ids = self.cut_and_encode(seq, add_special_tokens) |
|
token_ids_list.append(token_ids) |
|
return {"input_ids": token_ids_list} |