import os # Generate README file with dataset description def generate_readme(dataset_name: str, description: str, columns: list) -> None: """ Generates a README file for the dataset, including a description and column details. Args: - dataset_name (str): The name of the dataset. - description (str): Description of the dataset. - columns (list): List of columns with descriptions. """ readme_content = f"# {dataset_name}\n\n" readme_content += f"## Description\n{description}\n\n" readme_content += "## Columns\n" for column, col_description in columns: readme_content += f"- {column}: {col_description}\n" # Save README.md file with open(f"{dataset_name}/README.md", "w") as f: f.write(readme_content) print(f"README generated for {dataset_name}") # Create a script for generating dataset-specific documentation def generate_dataset_docs(df, dataset_name: str) -> None: """ Generates a dataset documentation file with basic info such as column types. Args: - df (pd.DataFrame): The dataset. - dataset_name (str): The name of the dataset. """ columns_info = [(col, df[col].dtype) for col in df.columns] generate_readme(dataset_name, "A dataset for modeling purposes.", columns_info)