import os import logging import pandas as pd from sklearn.model_selection import train_test_split # Setup logging for debugging and tracking def setup_logging(log_file: str = 'data_pipeline.log'): """ Sets up logging for the pipeline to track progress and debug. Args: - log_file (str): Path to the log file. """ logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logging.info("Logging setup complete.") # Split dataset into training and testing sets def split_data(df: pd.DataFrame, target_column: str, test_size: float = 0.2): """ Splits the dataset into training and testing sets. Args: - df (pd.DataFrame): The dataset. - target_column (str): The column to predict. - test_size (float): The proportion of data to use for testing. Returns: - tuple: X_train, X_test, y_train, y_test. """ X = df.drop(columns=[target_column]) y = df[target_column] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42) return X_train, X_test, y_train, y_test # Save DataFrame to CSV def save_dataframe_to_csv(df: pd.DataFrame, file_path: str): """ Saves the DataFrame to a CSV file. Args: - df (pd.DataFrame): The dataset to save. - file_path (str): Path where the CSV will be saved. """ df.to_csv(file_path, index=False) logging.info(f"Data saved to {file_path}") # Load DataFrame from CSV def load_dataframe_from_csv(file_path: str) -> pd.DataFrame: """ Loads a CSV file into a DataFrame. Args: - file_path (str): Path to the CSV file. Returns: - pd.DataFrame: Loaded dataset. """ if os.path.exists(file_path): df = pd.read_csv(file_path) logging.info(f"Data loaded from {file_path}") return df else: logging.error(f"{file_path} does not exist.") return pd.DataFrame()