from sklearn.preprocessing import StandardScaler, LabelEncoder import pandas as pd # Standardize features (e.g., scaling numerical values) def standardize_features(df: pd.DataFrame) -> pd.DataFrame: """ Standardizes the numerical features of the dataset to have zero mean and unit variance. Args: - df (pd.DataFrame): The dataset. Returns: - pd.DataFrame: The dataset with standardized features. """ scaler = StandardScaler() numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns df[numeric_columns] = scaler.fit_transform(df[numeric_columns]) return df # Label Encoding for categorical variables def encode_labels(df: pd.DataFrame, target_column: str) -> pd.DataFrame: """ Encodes categorical variables into numerical labels. Args: - df (pd.DataFrame): The dataset. - target_column (str): The column to encode. Returns: - pd.DataFrame: The dataset with encoded labels for the target column. """ label_encoder = LabelEncoder() df[target_column] = label_encoder.fit_transform(df[target_column]) return df