import matplotlib.pyplot as plt import seaborn as sns import pandas as pd # Plot a heatmap of correlations between features def plot_correlation_heatmap(df: pd.DataFrame) -> None: """ Plots a heatmap showing the correlations between numeric features in the dataset. Args: - df (pd.DataFrame): The dataset. """ correlation_matrix = df.corr() plt.figure(figsize=(10, 8)) sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt='.2f', linewidths=0.5) plt.title("Correlation Heatmap") plt.show() # Plot feature distribution for each numeric feature def plot_feature_distributions(df: pd.DataFrame) -> None: """ Plots the distribution of each numeric feature in the dataset. Args: - df (pd.DataFrame): The dataset. """ numeric_columns = df.select_dtypes(include=[np.number]).columns df[numeric_columns].hist(figsize=(12, 10), bins=30, edgecolor='black') plt.suptitle("Feature Distributions") plt.show() # Feature importance based on a model (Random Forest example) def plot_feature_importance(model, X_train: pd.DataFrame) -> None: """ Plots the feature importance based on the trained model. Args: - model: The trained model (Random Forest). - X_train (pd.DataFrame): The training feature data. """ feature_importances = model.feature_importances_ feature_names = X_train.columns sorted_idx = feature_importances.argsort() plt.figure(figsize=(10, 6)) plt.barh(feature_names[sorted_idx], feature_importances[sorted_idx]) plt.title("Feature Importance") plt.xlabel("Importance") plt.show()