import pandas as pd import numpy as np # Load data def load_data(file_path: str) -> pd.DataFrame: """ Loads the dataset from a CSV file. Args: - file_path (str): Path to the dataset file. Returns: - pd.DataFrame: Loaded dataset. """ return pd.read_csv(file_path) # Clean data (e.g., handle missing values, remove duplicates) def clean_data(df: pd.DataFrame) -> pd.DataFrame: """ Cleans the dataset by removing duplicates and handling missing values. Args: - df (pd.DataFrame): The raw dataset. Returns: - pd.DataFrame: Cleaned dataset. """ df = df.drop_duplicates() df = df.fillna(df.mean()) # Simple approach: fill missing values with column mean return df # Normalize data (e.g., standard scaling) def normalize_data(df: pd.DataFrame) -> pd.DataFrame: """ Normalizes the dataset using standard scaling (z-score). Args: - df (pd.DataFrame): The cleaned dataset. Returns: - pd.DataFrame: Normalized dataset. """ return (df - df.mean()) / df.std() # Main function for preprocessing def preprocess_data(file_path: str) -> pd.DataFrame: """ Preprocesses the dataset from file by loading, cleaning, and normalizing it. Args: - file_path (str): Path to the dataset file. Returns: - pd.DataFrame: The preprocessed dataset. """ df = load_data(file_path) df = clean_data(df) df = normalize_data(df) return df