Canstralian's picture
Upload 17 files
c2257a6 verified
raw
history blame
2.02 kB
import os
import logging
import pandas as pd
from sklearn.model_selection import train_test_split
# Setup logging for debugging and tracking
def setup_logging(log_file: str = 'data_pipeline.log'):
"""
Sets up logging for the pipeline to track progress and debug.
Args:
- log_file (str): Path to the log file.
"""
logging.basicConfig(filename=log_file,
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
logging.info("Logging setup complete.")
# Split dataset into training and testing sets
def split_data(df: pd.DataFrame, target_column: str, test_size: float = 0.2):
"""
Splits the dataset into training and testing sets.
Args:
- df (pd.DataFrame): The dataset.
- target_column (str): The column to predict.
- test_size (float): The proportion of data to use for testing.
Returns:
- tuple: X_train, X_test, y_train, y_test.
"""
X = df.drop(columns=[target_column])
y = df[target_column]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
return X_train, X_test, y_train, y_test
# Save DataFrame to CSV
def save_dataframe_to_csv(df: pd.DataFrame, file_path: str):
"""
Saves the DataFrame to a CSV file.
Args:
- df (pd.DataFrame): The dataset to save.
- file_path (str): Path where the CSV will be saved.
"""
df.to_csv(file_path, index=False)
logging.info(f"Data saved to {file_path}")
# Load DataFrame from CSV
def load_dataframe_from_csv(file_path: str) -> pd.DataFrame:
"""
Loads a CSV file into a DataFrame.
Args:
- file_path (str): Path to the CSV file.
Returns:
- pd.DataFrame: Loaded dataset.
"""
if os.path.exists(file_path):
df = pd.read_csv(file_path)
logging.info(f"Data loaded from {file_path}")
return df
else:
logging.error(f"{file_path} does not exist.")
return pd.DataFrame()