|
import os |
|
import logging |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
def setup_logging(log_file: str = 'data_pipeline.log'): |
|
""" |
|
Sets up logging for the pipeline to track progress and debug. |
|
|
|
Args: |
|
- log_file (str): Path to the log file. |
|
""" |
|
logging.basicConfig(filename=log_file, |
|
level=logging.INFO, |
|
format='%(asctime)s - %(levelname)s - %(message)s') |
|
logging.info("Logging setup complete.") |
|
|
|
|
|
def split_data(df: pd.DataFrame, target_column: str, test_size: float = 0.2): |
|
""" |
|
Splits the dataset into training and testing sets. |
|
|
|
Args: |
|
- df (pd.DataFrame): The dataset. |
|
- target_column (str): The column to predict. |
|
- test_size (float): The proportion of data to use for testing. |
|
|
|
Returns: |
|
- tuple: X_train, X_test, y_train, y_test. |
|
""" |
|
X = df.drop(columns=[target_column]) |
|
y = df[target_column] |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42) |
|
|
|
return X_train, X_test, y_train, y_test |
|
|
|
|
|
def save_dataframe_to_csv(df: pd.DataFrame, file_path: str): |
|
""" |
|
Saves the DataFrame to a CSV file. |
|
|
|
Args: |
|
- df (pd.DataFrame): The dataset to save. |
|
- file_path (str): Path where the CSV will be saved. |
|
""" |
|
df.to_csv(file_path, index=False) |
|
logging.info(f"Data saved to {file_path}") |
|
|
|
|
|
def load_dataframe_from_csv(file_path: str) -> pd.DataFrame: |
|
""" |
|
Loads a CSV file into a DataFrame. |
|
|
|
Args: |
|
- file_path (str): Path to the CSV file. |
|
|
|
Returns: |
|
- pd.DataFrame: Loaded dataset. |
|
""" |
|
if os.path.exists(file_path): |
|
df = pd.read_csv(file_path) |
|
logging.info(f"Data loaded from {file_path}") |
|
return df |
|
else: |
|
logging.error(f"{file_path} does not exist.") |
|
return pd.DataFrame() |