|
from sklearn.preprocessing import StandardScaler, LabelEncoder |
|
import pandas as pd |
|
|
|
|
|
def standardize_features(df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Standardizes the numerical features of the dataset to have zero mean and unit variance. |
|
|
|
Args: |
|
- df (pd.DataFrame): The dataset. |
|
|
|
Returns: |
|
- pd.DataFrame: The dataset with standardized features. |
|
""" |
|
scaler = StandardScaler() |
|
numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns |
|
df[numeric_columns] = scaler.fit_transform(df[numeric_columns]) |
|
|
|
return df |
|
|
|
|
|
def encode_labels(df: pd.DataFrame, target_column: str) -> pd.DataFrame: |
|
""" |
|
Encodes categorical variables into numerical labels. |
|
|
|
Args: |
|
- df (pd.DataFrame): The dataset. |
|
- target_column (str): The column to encode. |
|
|
|
Returns: |
|
- pd.DataFrame: The dataset with encoded labels for the target column. |
|
""" |
|
label_encoder = LabelEncoder() |
|
df[target_column] = label_encoder.fit_transform(df[target_column]) |
|
|
|
return df |