Canstralian's picture
Upload 17 files
c2257a6 verified
raw
history blame
1.13 kB
from sklearn.preprocessing import StandardScaler, LabelEncoder
import pandas as pd
# Standardize features (e.g., scaling numerical values)
def standardize_features(df: pd.DataFrame) -> pd.DataFrame:
"""
Standardizes the numerical features of the dataset to have zero mean and unit variance.
Args:
- df (pd.DataFrame): The dataset.
Returns:
- pd.DataFrame: The dataset with standardized features.
"""
scaler = StandardScaler()
numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns
df[numeric_columns] = scaler.fit_transform(df[numeric_columns])
return df
# Label Encoding for categorical variables
def encode_labels(df: pd.DataFrame, target_column: str) -> pd.DataFrame:
"""
Encodes categorical variables into numerical labels.
Args:
- df (pd.DataFrame): The dataset.
- target_column (str): The column to encode.
Returns:
- pd.DataFrame: The dataset with encoded labels for the target column.
"""
label_encoder = LabelEncoder()
df[target_column] = label_encoder.fit_transform(df[target_column])
return df