Canstralian's picture
Upload 17 files
c2257a6 verified
raw
history blame
1.99 kB
import numpy as np
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.utils import resample
# Add polynomial features for data augmentation
def add_polynomial_features(df: pd.DataFrame, degree: int = 2) -> pd.DataFrame:
"""
Adds polynomial features to the dataset.
Args:
- df (pd.DataFrame): The dataset.
- degree (int): The degree of the polynomial features.
Returns:
- pd.DataFrame: The augmented dataset with polynomial features.
"""
poly = PolynomialFeatures(degree)
poly_features = poly.fit_transform(df.select_dtypes(include=np.number))
poly_feature_names = poly.get_feature_names(df.select_dtypes(include=np.number).columns)
# Combine polynomial features with the original dataset
poly_df = pd.DataFrame(poly_features, columns=poly_feature_names)
df_augmented = pd.concat([df, poly_df], axis=1)
return df_augmented
# Synthetic oversampling using bootstrap sampling (Resampling)
def oversample_data(df: pd.DataFrame, target_column: str) -> pd.DataFrame:
"""
Performs oversampling to balance the dataset using bootstrapping.
Args:
- df (pd.DataFrame): The dataset.
- target_column (str): The target column to balance.
Returns:
- pd.DataFrame: The resampled dataset.
"""
# Separate majority and minority classes
majority_class = df[df[target_column] == df[target_column].mode()[0]]
minority_class = df[df[target_column] != df[target_column].mode()[0]]
# Resample minority class
minority_resampled = resample(minority_class,
replace=True, # Allow sampling of the same row more than once
n_samples=majority_class.shape[0], # Equalize the number of samples
random_state=42)
# Combine majority and minority
df_resampled = pd.concat([majority_class, minority_resampled])
return df_resampled