File size: 25,413 Bytes
9e8df72 de1f0ae 9e8df72 7fedb50 de1f0ae 7fedb50 9e8df72 ee3f33b 9e8df72 c00c9ca 9e8df72 c00c9ca 9e8df72 14292ab 9e8df72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
import os
import re
import ast
import json
import random
from pathlib import Path
from itertools import product
from dataclasses import dataclass
from typing import Dict, List, Tuple
import requests
import datasets
import numpy as np
_CITATION = """\
@inproceedings{grouin-etal-2021-classification,
title = "Classification de cas cliniques et {\'e}valuation automatique de r{\'e}ponses d{'}{\'e}tudiants : pr{\'e}sentation de la campagne {DEFT} 2021 (Clinical cases classification and automatic evaluation of student answers : Presentation of the {DEFT} 2021 Challenge)",
author = "Grouin, Cyril and
Grabar, Natalia and
Illouz, Gabriel",
booktitle = "Actes de la 28e Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles. Atelier D{\'E}fi Fouille de Textes (DEFT)",
month = "6",
year = "2021",
address = "Lille, France",
publisher = "ATALA",
url = "https://aclanthology.org/2021.jeptalnrecital-deft.1",
pages = "1--13",
abstract = "Le d{\'e}fi fouille de textes (DEFT) est une campagne d{'}{\'e}valuation annuelle francophone. Nous pr{\'e}sentons les corpus et baselines {\'e}labor{\'e}es pour trois t{\^a}ches : (i) identifier le profil clinique de patients d{\'e}crits dans des cas cliniques, (ii) {\'e}valuer automatiquement les r{\'e}ponses d{'}{\'e}tudiants sur des questionnaires en ligne (Moodle) {\`a} partir de la correction de l{'}enseignant, et (iii) poursuivre une {\'e}valuation de r{\'e}ponses d{'}{\'e}tudiants {\`a} partir de r{\'e}ponses d{\'e}j{\`a} {\'e}valu{\'e}es par l{'}enseignant. Les r{\'e}sultats varient de 0,394 {\`a} 0,814 de F-mesure sur la premi{\`e}re t{\^a}che (7 {\'e}quipes), de 0,448 {\`a} 0,682 de pr{\'e}cision sur la deuxi{\`e}me (3 {\'e}quipes), et de 0,133 {\`a} 0,510 de pr{\'e}cision sur la derni{\`e}re (3 {\'e}quipes).",
language = "French",
}
"""
_DESCRIPTION = """\
ddd
"""
_HOMEPAGE = "ddd"
_LICENSE = "unknown"
_SPECIALITIES = ['immunitaire', 'endocriniennes', 'blessures', 'chimiques', 'etatsosy', 'nutritionnelles', 'infections', 'virales', 'parasitaires', 'tumeur', 'osteomusculaires', 'stomatognathique', 'digestif', 'respiratoire', 'ORL', 'nerveux', 'oeil', 'homme', 'femme', 'cardiovasculaires', 'hemopathies', 'genetique', 'peau']
_LABELS_BASE = ['anatomie', 'date', 'dose', 'duree', 'examen', 'frequence', 'mode', 'moment', 'pathologie', 'sosy', 'substance', 'traitement', 'valeur']
class StringIndex:
def __init__(self, vocab):
self.vocab_struct = {}
print("Start building the index!")
for t in vocab:
if len(t) == 0:
continue
# Index terms by their first letter and length
key = (t[0], len(t))
if (key in self.vocab_struct) == False:
self.vocab_struct[key] = []
self.vocab_struct[key].append(t)
print("Finished building the index!")
def find(self, t):
key = (t[0], len(t))
if (key in self.vocab_struct) == False:
return "is_oov"
return "is_not_oov" if t in self.vocab_struct[key] else "is_oov"
_VOCAB = StringIndex(vocab=requests.get("https://huggingface.co/datasets/BioMedTok/vocabulary_nachos_lowercased/resolve/main/vocabulary_nachos_lowercased.txt").text.split("\n"))
class DEFT2021(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "ner"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="cls", version="1.0.0", description="DEFT 2021 corpora - Classification task"),
datasets.BuilderConfig(name="ner", version="1.0.0", description="DEFT 2021 corpora - Named-entity recognition task"),
]
def _info(self):
if self.config.name.find("cls") != -1:
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"specialities": datasets.Sequence(
datasets.features.ClassLabel(names=_SPECIALITIES),
),
"specialities_one_hot": datasets.Sequence(
datasets.Value("float"),
),
}
)
elif self.config.name.find("ner") != -1:
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names = ['O', 'B-anatomie', 'I-anatomie', 'B-date', 'I-date', 'B-dose', 'I-dose', 'B-duree', 'I-duree', 'B-examen', 'I-examen', 'B-frequence', 'I-frequence', 'B-mode', 'I-mode', 'B-moment', 'I-moment', 'B-pathologie', 'I-pathologie', 'B-sosy', 'I-sosy', 'B-substance', 'I-substance', 'B-traitement', 'I-traitement', 'B-valeur', 'I-valeur'],
)
),
"is_oov": datasets.Sequence(
datasets.features.ClassLabel(
names=['is_not_oov', 'is_oov'],
),
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_dir": data_dir,
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": data_dir,
"split": "test",
},
),
]
def remove_prefix(self, a: str, prefix: str) -> str:
if a.startswith(prefix):
a = a[len(prefix) :]
return a
def parse_brat_file(self, txt_file: Path, annotation_file_suffixes: List[str] = None, parse_notes: bool = False) -> Dict:
example = {}
example["document_id"] = txt_file.with_suffix("").name
with txt_file.open() as f:
example["text"] = f.read()
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
# for event extraction
if annotation_file_suffixes is None:
annotation_file_suffixes = [".a1", ".a2", ".ann"]
if len(annotation_file_suffixes) == 0:
raise AssertionError(
"At least one suffix for the to-be-read annotation files should be given!"
)
ann_lines = []
for suffix in annotation_file_suffixes:
annotation_file = txt_file.with_suffix(suffix)
if annotation_file.exists():
with annotation_file.open() as f:
ann_lines.extend(f.readlines())
example["text_bound_annotations"] = []
example["events"] = []
example["relations"] = []
example["equivalences"] = []
example["attributes"] = []
example["normalizations"] = []
if parse_notes:
example["notes"] = []
for line in ann_lines:
line = line.strip()
if not line:
continue
if line.startswith("T"): # Text bound
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"] = fields[1].split()[0]
ann["offsets"] = []
span_str = self.remove_prefix(fields[1], (ann["type"] + " "))
text = fields[2]
for span in span_str.split(";"):
start, end = span.split()
ann["offsets"].append([int(start), int(end)])
# Heuristically split text of discontiguous entities into chunks
ann["text"] = []
if len(ann["offsets"]) > 1:
i = 0
for start, end in ann["offsets"]:
chunk_len = end - start
ann["text"].append(text[i : chunk_len + i])
i += chunk_len
while i < len(text) and text[i] == " ":
i += 1
else:
ann["text"] = [text]
example["text_bound_annotations"].append(ann)
elif line.startswith("E"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
ann["arguments"] = []
for role_ref_id in fields[1].split()[1:]:
argument = {
"role": (role_ref_id.split(":"))[0],
"ref_id": (role_ref_id.split(":"))[1],
}
ann["arguments"].append(argument)
example["events"].append(ann)
elif line.startswith("R"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"] = fields[1].split()[0]
ann["head"] = {
"role": fields[1].split()[1].split(":")[0],
"ref_id": fields[1].split()[1].split(":")[1],
}
ann["tail"] = {
"role": fields[1].split()[2].split(":")[0],
"ref_id": fields[1].split()[2].split(":")[1],
}
example["relations"].append(ann)
# '*' seems to be the legacy way to mark equivalences,
# but I couldn't find any info on the current way
# this might have to be adapted dependent on the brat version
# of the annotation
elif line.startswith("*"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["ref_ids"] = fields[1].split()[1:]
example["equivalences"].append(ann)
elif line.startswith("A") or line.startswith("M"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
if len(info) > 2:
ann["value"] = info[2]
else:
ann["value"] = ""
example["attributes"].append(ann)
elif line.startswith("N"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["text"] = fields[2]
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
ann["resource_name"] = info[2].split(":")[0]
ann["cuid"] = info[2].split(":")[1]
example["normalizations"].append(ann)
elif parse_notes and line.startswith("#"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["text"] = fields[2] if len(fields) == 3 else "<BB_NULL_STR>"
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
example["notes"].append(ann)
return example
def _to_source_example(self, brat_example: Dict) -> Dict:
source_example = {
"document_id": brat_example["document_id"],
"text": brat_example["text"],
}
source_example["entities"] = []
for entity_annotation in brat_example["text_bound_annotations"]:
entity_ann = entity_annotation.copy()
# Change id property name
entity_ann["entity_id"] = entity_ann["id"]
entity_ann.pop("id")
# Add entity annotation to sample
source_example["entities"].append(entity_ann)
return source_example
def convert_to_prodigy(self, json_object, list_label):
def prepare_split(text):
rep_before = ['?', '!', ';', '*']
rep_after = ['’', "'"]
rep_both = ['-', '/', '[', ']', ':', ')', '(', ',', '.']
for i in rep_before:
text = text.replace(i, ' '+i)
for i in rep_after:
text = text.replace(i, i+' ')
for i in rep_both:
text = text.replace(i, ' '+i+' ')
text_split = text.split()
punctuations = [',', '.']
for j in range(0, len(text_split)-1):
if j-1 >= 0 and j+1 <= len(text_split)-1 and text_split[j-1][-1].isdigit() and text_split[j+1][0].isdigit():
if text_split[j] in punctuations:
text_split[j-1:j+2] = [''.join(text_split[j-1:j+2])]
text = ' '.join(text_split)
return text
new_json = []
for ex in [json_object]:
text = prepare_split(ex['text'])
tokenized_text = text.split()
list_spans = []
for a in ex['entities']:
for o in range(len(a['offsets'])):
text_annot = prepare_split(a['text'][o])
offset_start = a['offsets'][o][0]
offset_end = a['offsets'][o][1]
nb_tokens_annot = len(text_annot.split())
txt_offsetstart = prepare_split(ex['text'][:offset_start])
nb_tokens_before_annot = len(txt_offsetstart.split())
token_start = nb_tokens_before_annot
token_end = token_start + nb_tokens_annot - 1
if a['type'] in list_label:
list_spans.append({
'start': offset_start,
'end': offset_end,
'token_start': token_start,
'token_end': token_end,
'label': a['type'],
'id': a['entity_id'],
'text': a['text'][o],
})
res = {
'id': ex['document_id'],
'document_id': ex['document_id'],
'text': ex['text'],
'tokens': tokenized_text,
'spans': list_spans
}
new_json.append(res)
return new_json
def convert_to_hf_format(self, json_object):
dict_out = []
for i in json_object:
# Filter annotations to keep the longest annotated spans when there is nested annotations
selected_annotations = []
if 'spans' in i:
for idx_j, j in enumerate(i['spans']):
len_j = int(j['end'])-int(j['start'])
range_j = [l for l in range(int(j['start']),int(j['end']),1)]
keep = True
for idx_k, k in enumerate(i['spans'][idx_j+1:]):
len_k = int(k['end'])-int(k['start'])
range_k = [l for l in range(int(k['start']),int(k['end']),1)]
inter = list(set(range_k).intersection(set(range_j)))
if len(inter) > 0 and len_j < len_k:
keep = False
if keep:
selected_annotations.append(j)
# Create list of labels + id to separate different annotation and prepare IOB2 format
nb_tokens = len(i['tokens'])
ner_tags = ['O']*nb_tokens
for slct in selected_annotations:
for x in range(slct['token_start'], slct['token_end']+1, 1):
if i['tokens'][x] not in slct['text']:
if ner_tags[x-1] == 'O':
ner_tags[x-1] = slct['label']+'-'+slct['id']
else:
if ner_tags[x] == 'O':
ner_tags[x] = slct['label']+'-'+slct['id']
# Make IOB2 format
ner_tags_IOB2 = []
for idx_l, label in enumerate(ner_tags):
if label == 'O':
ner_tags_IOB2.append('O')
else:
current_label = label.split('-')[0]
current_id = label.split('-')[1]
if idx_l == 0:
ner_tags_IOB2.append('B-'+current_label)
elif current_label in ner_tags[idx_l-1]:
if current_id == ner_tags[idx_l-1].split('-')[1]:
ner_tags_IOB2.append('I-'+current_label)
else:
ner_tags_IOB2.append('B-'+current_label)
else:
ner_tags_IOB2.append('B-'+current_label)
dict_out.append({
'id': i['id'],
'document_id': i['document_id'],
"ner_tags": ner_tags_IOB2,
"tokens": i['tokens'],
})
return dict_out
def split_sentences(self, json_o):
"""
Split each document in sentences to fit the 512 maximum tokens of BERT.
"""
final_json = []
for i in json_o:
ind_punc = [index for index, value in enumerate(i['tokens']) if value=='.'] + [len(i['tokens'])]
for index, value in enumerate(ind_punc):
if index==0:
final_json.append({'id': i['id']+'_'+str(index),
'document_id': i['document_id'],
'ner_tags': i['ner_tags'][:value+1],
'tokens': i['tokens'][:value+1]
})
else:
prev_value = ind_punc[index-1]
final_json.append({'id': i['id']+'_'+str(index),
'document_id': i['document_id'],
'ner_tags': i['ner_tags'][prev_value+1:value+1],
'tokens': i['tokens'][prev_value+1:value+1]
})
return final_json
def _generate_examples(self, data_dir, split):
if self.config.name.find("cls") != -1:
all_res = {}
key = 0
if split == 'train' or split == 'validation':
split_eval = 'train'
else:
split_eval = 'test'
path_labels = Path(data_dir) / 'evaluations' / f"ref-{split_eval}-deft2021.txt"
with open(os.path.join(data_dir, 'distribution-corpus.txt')) as f_dist:
doc_specialities_ = {}
with open(path_labels) as f_spec:
doc_specialities = [line.strip() for line in f_spec.readlines()]
for raw in doc_specialities:
raw_split = raw.split('\t')
if len(raw_split) == 3 and raw_split[0] in doc_specialities_:
doc_specialities_[raw_split[0]].append(raw_split[1])
elif len(raw_split) == 3 and raw_split[0] not in doc_specialities_:
doc_specialities_[raw_split[0]] = [raw_split[1]]
ann_path = Path(data_dir) / "DEFT-cas-cliniques"
for guid, txt_file in enumerate(sorted(ann_path.glob("*.txt"))):
ann_file = txt_file.with_suffix("").name.split('.')[0]+'.ann'
if ann_file in doc_specialities_:
res = {}
res['document_id'] = txt_file.with_suffix("").name
with txt_file.open() as f:
res["text"] = f.read()
specialities = doc_specialities_[ann_file]
# Empty one hot vector
one_hot = [0.0 for i in _SPECIALITIES]
# Fill up the one hot vector
for s in specialities:
one_hot[_SPECIALITIES.index(s)] = 1.0
all_res[res['document_id']] = {
"id": str(key),
"document_id": res['document_id'],
"text": res["text"].lower(),
"specialities": specialities,
"specialities_one_hot": one_hot,
}
key += 1
distribution = [line.strip() for line in f_dist.readlines()]
random.seed(4)
train = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'train 2021']
random.shuffle(train)
random.shuffle(train)
random.shuffle(train)
train, validation = np.split(train, [int(len(train)*0.7096)])
test = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'test 2021']
if split == "train":
allowed_ids = list(train)
elif split == "test":
allowed_ids = list(test)
elif split == "validation":
allowed_ids = list(validation)
for r in all_res.values():
if r["document_id"]+'.txt' in allowed_ids:
yield r["id"], r
elif self.config.name.find("ner") != -1:
all_res = []
key = 0
with open(os.path.join(data_dir, 'distribution-corpus.txt')) as f_dist:
distribution = [line.strip() for line in f_dist.readlines()]
random.seed(4)
train = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'train 2021']
random.shuffle(train)
random.shuffle(train)
random.shuffle(train)
train, validation = np.split(train, [int(len(train)*0.73)])
test = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'test 2021']
ann_path = Path(data_dir) / "DEFT-cas-cliniques"
for guid, txt_file in enumerate(sorted(ann_path.glob("*.txt"))):
brat_example = self.parse_brat_file(txt_file, parse_notes=True)
source_example = self._to_source_example(brat_example)
prod_format = self.convert_to_prodigy(source_example, _LABELS_BASE)
hf_format = self.convert_to_hf_format(prod_format)
hf_split = self.split_sentences(hf_format)
for h in hf_split:
if len(h['tokens']) > 0 and len(h['ner_tags']) > 0:
all_res.append({
"id": str(key),
"document_id": h['document_id'],
"tokens": [tok.lower() for tok in h['tokens']],
"ner_tags": h['ner_tags'],
"is_oov": [_VOCAB.find(tt.lower()) for tt in h['tokens']]
})
key += 1
if split == "train":
allowed_ids = list(train)
elif split == "validation":
allowed_ids = list(validation)
elif split == "test":
allowed_ids = list(test)
for r in all_res:
if r["document_id"]+'.txt' in allowed_ids:
yield r["id"], r |