Update README.md
Browse files
README.md
CHANGED
@@ -22,9 +22,12 @@ In this dataset, given a tweet, the goal was to infer the underlying topic of th
|
|
22 |
|
23 |
```python
|
24 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
|
|
25 |
tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
|
26 |
model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
|
|
|
27 |
nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer)
|
28 |
nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...")
|
|
|
29 |
# Output: [{'label': 'opinions', 'score': 0.831]
|
30 |
```
|
|
|
22 |
|
23 |
```python
|
24 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
25 |
+
|
26 |
tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
|
27 |
model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
|
28 |
+
|
29 |
nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer)
|
30 |
nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...")
|
31 |
+
|
32 |
# Output: [{'label': 'opinions', 'score': 0.831]
|
33 |
```
|