--- library_name: peft license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml # Configure the base model strict: false base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tokenizer_config: meta-llama/Meta-Llama-3.1-8B-Instruct model_type: AutoModelForCausalLM # Output configuration hub_model_id: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b dataset_prepared_path: /workspace/gen_judge/data/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b output_dir: /workspace/gen_judge/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b # Format the dataset into the right instruction format. chat_template: llama3 #llama 3 instruct chat template USE datasets: - path: collinear-ai/prompt-response-eval-classification-dataset-final-axolotl split: without_animal_env_abuse_train type: chat_template chat_template: llama3 field_messages: train_conv message_field_role: role message_field_content: content train_on_inputs: false #FALSE val_set_size: 0.05 # Data packing sequence_len: 2048 eval_sample_packing: false sample_packing: false pad_to_sequence_len: true group_by_length: false # Lora config adapter: qlora lora_model_dir: load_in_8bit: false load_in_4bit: true lora_r: 64 lora_alpha: 32 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head # Logging config wandb_project: general-judge-harmfulness-bif-data wandb_entity: nazneen wandb_name: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b # Trainer config gradient_accumulation_steps: 2 micro_batch_size: 12 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00005 bfloat16: true bf16: true fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 10 xformers_attention: flash_attention: true save_safetensors: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 50 evals_per_epoch: 3 eval_table_size: eval_max_new_tokens: 500 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.02 fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ## weight decay ## add validation set (split add) ```

# harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 1.8779 | | 0.0152 | 0.3332 | 461 | 0.1341 | | 0.0072 | 0.6664 | 922 | 0.1252 | | 0.0046 | 0.9996 | 1383 | 0.1301 | | 0.0022 | 1.3329 | 1844 | 0.1315 | | 0.0028 | 1.6661 | 2305 | 0.1361 | | 0.0018 | 1.9993 | 2766 | 0.1338 | | 0.0005 | 2.3325 | 3227 | 0.1465 | | 0.0003 | 2.6657 | 3688 | 0.1488 | | 0.0002 | 2.9989 | 4149 | 0.1492 | ### Framework versions - PEFT 0.11.1 - Transformers 4.45.0 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.20.3