Commit
·
a222ac1
1
Parent(s):
0555ed8
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -94.72 +/- 99.99
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78de254b8550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78de254b85e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78de254b8670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78de254b8700>", "_build": "<function ActorCriticPolicy._build at 0x78de254b8790>", "forward": "<function ActorCriticPolicy.forward at 0x78de254b8820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78de254b88b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78de254b8940>", "_predict": "<function ActorCriticPolicy._predict at 0x78de254b89d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78de254b8a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78de254b8af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78de254b8b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78de254b6440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694040266634521131, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANCtJD/9UkG+4JyFu96UT7oHG3g+dcOxOgAAgD8AAIA/AMdoPQE1qj/cPTc/EiELvyZ2sL22lkS+AAAAAAAAAACjTWw/o84Ivj7F9j7x45a/LMfoPp1Byr0AAAAAAAAAAEPti76I1C4/26vZvqLCcb+dULO+82mZvgAAAAAAAAAAAAjSvMdhtj/a5567I/atvuJwnj3eRTQ9AAAAAAAAAACar5y8GeCwP/nJDL6DDvG9rOO6PKXTFD0AAAAAAAAAAGNEoz7QXYc/qo8QP8DsCr900r09atZcvAAAAAAAAAAAM8BJvS5ljj50VQA/x/pBv0ky/L4iej08AAAAAAAAAAD9X6E+bAaPPDNCAj/Xyl+/Ew25vJpTlz4AAAAAAAAAAK2eCT9i3Y0/UwXIPh0URL/Clag+24MMvgAAAAAAAAAAJrsgPxCoPD/u6QE+kOY/vyxuKz9TstY9AAAAAAAAAABmr/O8OBK+Pz9eir7UyWQ+7Kv/O9vQN70AAAAAAAAAADPn1j2XIGI/7ZRlPkRpDL/fRh6+zzwivgAAAAAAAAAAVlVYvhauzz6PFLe9maGHv/kPIr+Qs6u8AAAAAAAAAADl6Ak/2u4/vSPLCb0J4bu7g5Ywvm/UKL0AAIA/AACAP8atcD53DI0/DHm4PtzSJL+3IyA8bQ1NPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDAvyrgflp6MAWyUS4KMAXSUR0BSbCfHxSYPdX2UKGgGR8BWr4xHoX9BaAdLSWgIR0BSbNroGIKudX2UKGgGR8BOTpqASWZ7aAdLbWgIR0BSbbytmthedX2UKGgGR0AxSjGDL8rJaAdLV2gIR0BScAbp/wy7dX2UKGgGR8BbGmCEpRXPaAdLiWgIR0BScsoDxLCfdX2UKGgGR8BTFEPUaybAaAdLcmgIR0BSeIhllK9PdX2UKGgGR8BXB8mv4dp7aAdLZ2gIR0BSeXWvr4WUdX2UKGgGR8A02fRu0kWzaAdLX2gIR0BSe0ExIre7dX2UKGgGR8BRPRc/t6X0aAdLnWgIR0BSfdKEnLJTdX2UKGgGR8BZ7Txb0OEvaAdLWGgIR0BSgFRceKbbdX2UKGgGR0A14P1ct5D7aAdLZ2gIR0BSgFSflIVedX2UKGgGR0Alf30PH1e0aAdLZWgIR0BSgpcxCY1HdX2UKGgGR8BUz/etSydGaAdLV2gIR0BShC3PRiPRdX2UKGgGR8AcBt/FzdULaAdLX2gIR0BShBl+Vkc0dX2UKGgGR8BWdxZU1hsqaAdLcmgIR0BSiCRwIdELdX2UKGgGR8BQvl6iTMaCaAdLbWgIR0BSiUHlfZ27dX2UKGgGR8A39ovi97F9aAdLjGgIR0BSiu/+KjzqdX2UKGgGR8BRXRmXgLqmaAdLfWgIR0BSj+dkJ8fFdX2UKGgGR8BNzdAood+5aAdLXWgIR0BSlrDZUT+OdX2UKGgGR8BPrsk6cRUWaAdLU2gIR0BSllDfFaStdX2UKGgGR8BSY4QnQY1paAdLlmgIR0BSmWm+CbtrdX2UKGgGR8BTtrbYbsF/aAdLiWgIR0BSnPz4DcM3dX2UKGgGR8BPuwkHD766aAdLV2gIR0BSoBHf/FR6dX2UKGgGR8BPTdvsJIDpaAdLg2gIR0BSowdOqNp/dX2UKGgGR8BNtxPGhmGuaAdLa2gIR0BSpJN9H+ZPdX2UKGgGR8BGCw/X5FgEaAdLpWgIR0BSpJ6MR6F/dX2UKGgGR8BFZLe67NB4aAdLa2gIR0BSqgsK9f1IdX2UKGgGR8BGS+4b0e2eaAdLWWgIR0BSrPNmlImPdX2UKGgGR8BTdmn889wFaAdLmWgIR0BSrZoPCl7/dX2UKGgGR8BB7HVXmvGIaAdLhGgIR0BSroScslLOdX2UKGgGR8BUKoMvysjnaAdLdWgIR0BSs5NCZ4OddX2UKGgGR8BIJw1ivxH5aAdLgmgIR0BSsy+De0ojdX2UKGgGR8BOTEG7jDKpaAdLgWgIR0BSufYFqzqsdX2UKGgGR8BJlanJkoWpaAdLXWgIR0BSvdY0VJtjdX2UKGgGR8BRNnVTaTOgaAdLgmgIR0BSw4L1EmY0dX2UKGgGR8BVrK0Y0l7daAdLcWgIR0BSw9rbg0j1dX2UKGgGR8BnDc8FINExaAdLdWgIR0BSxNn9NvfkdX2UKGgGR8BV9Im9g4OuaAdLZmgIR0BSx2oegctHdX2UKGgGR8BJHlwcYIjXaAdLemgIR0BSzGtuDSPVdX2UKGgGR8BGqdFOO802aAdLVGgIR0BSzOJYT0xudX2UKGgGR8BTinmJWNm2aAdLcGgIR0BSz2xD9fkWdX2UKGgGR8A2eQI2OyVwaAdLZWgIR0BS1Aq3EyckdX2UKGgGR0BBPcCo0hvBaAdLcmgIR0BS1dWp6yB1dX2UKGgGR8BE078ejmCAaAdLgmgIR0BS4OnIhhYvdX2UKGgGR8BRCgJHAh0RaAdLuWgIR0BS7HYYixFBdX2UKGgGR8BFCEtdzGPxaAdLc2gIR0BS7H+ERJ2/dX2UKGgGR8BY8TSPU8V6aAdLgWgIR0BS7i9IwudxdX2UKGgGR8BQ97c45tFbaAdLlGgIR0BS7qRMewLWdX2UKGgGR8BMVH0kGA09aAdLTWgIR0BS8DeoDPnkdX2UKGgGR8BIfgSvkiljaAdLxGgIR0BS8yvs7dSEdX2UKGgGR8BFgfDUExIraAdLaGgIR0BS8uLBKtgbdX2UKGgGR8BZifnKW9lFaAdLfWgIR0BS9x5TqB3BdX2UKGgGR8Bc965TZQHiaAdLa2gIR0BS+WLP2PDHdX2UKGgGR8A92AUtZmqYaAdLgGgIR0BS+drCWNWEdX2UKGgGR8Ak/vxYq5LAaAdLWWgIR0BS+9mpVCHAdX2UKGgGR8As4+jdpItlaAdLfGgIR0BTAEi+tbLVdX2UKGgGR8BBtfR/mT1TaAdLWmgIR0BTBqiTMaCMdX2UKGgGR8Bd5PViF0xNaAdLqGgIR0BTCHscABDHdX2UKGgGR8BKzBqbjLjhaAdLTGgIR0BTDAgX/HYIdX2UKGgGR8BTdBE4NqgzaAdLiGgIR0BTDSxqwhW6dX2UKGgGR8BUE49s7+1jaAdLU2gIR0BTES97F85TdX2UKGgGR8BSgOpGWldkaAdLVmgIR0BTFxbGFSKndX2UKGgGR8BZ2gxWT5fuaAdLY2gIR0BTGGy9mHxjdX2UKGgGR8BGjNP557gLaAdLXGgIR0BTGlXzUZvUdX2UKGgGR8BHNrDqGDcuaAdLbmgIR0BTG/8ZUDMedX2UKGgGR8A2KKQ7tAs1aAdLXGgIR0BTIhqGlANYdX2UKGgGR8BEjKLbYbsGaAdLdWgIR0BTIutOmBOIdX2UKGgGR8BVNwJPZZjhaAdLb2gIR0BTJ+3Ytg8bdX2UKGgGR8BVT1fiPyTZaAdLaWgIR0BTKtCqp97XdX2UKGgGR8BC4/uLJjlQaAdLe2gIR0BTMLlvIfbLdX2UKGgGR8BMKQpe/pMYaAdLb2gIR0BTO7jtG/etdX2UKGgGR8AnePbwjMV2aAdLU2gIR0BTQCt/4IrwdX2UKGgGR0Ay8Axzq8lHaAdLbmgIR0BTQb9Q40djdX2UKGgGR0AnloX9BKL9aAdLlGgIR0BTRwX2ugYhdX2UKGgGR8A3a2ys0YTCaAdLWGgIR0BTT31rZamodX2UKGgGR8BTpUNjLB9DaAdLiGgIR0BTUaWX1J18dX2UKGgGR8BgpNvn8sMBaAdLc2gIR0BTVzyFwkxAdX2UKGgGR8BM18gIQe3haAdLoGgIR0BTWMk+otL+dX2UKGgGR8BRsA+2VmjCaAdLWWgIR0BTWddzGPxQdX2UKGgGR8BIueiSJTESaAdLfmgIR0BTWVj/dZaFdX2UKGgGR8BYT2eYlY2baAdLfmgIR0BTW4siB5HFdX2UKGgGR8BiXRjFyaNNaAdLbWgIR0BTXDEehf0FdX2UKGgGR8AU9Aood+5OaAdLe2gIR0BTaBtHhCMQdX2UKGgGR8BBfiyQgcLjaAdLbmgIR0BTaof8uSOjdX2UKGgGR8BQg3GGVRk3aAdLSGgIR0BTbU1yeZogdX2UKGgGR8BDy7g88s+WaAdLXmgIR0BTdJwOvt+kdX2UKGgGR8BTfEit7rs0aAdLaWgIR0BTdHSSeRPodX2UKGgGR8BHL81Gb1AaaAdLXmgIR0BTgnTRYzSDdX2UKGgGR8A/jNFBppN9aAdLgWgIR0BThzDbah6CdX2UKGgGR8BAZsn7YTTOaAdLXGgIR0BTiltO2y9mdX2UKGgGR8BM+R9w3o9taAdLVGgIR0BTiuWfK6nSdX2UKGgGR8BbkVSOzY29aAdLZmgIR0BTkxyGSIP9dX2UKGgGR8BiguD+R5kcaAdLZmgIR0BTlOFg2IfsdX2UKGgGR8BK/PwmVqveaAdLbWgIR0BTls7ZFocrdX2UKGgGR8BcieerdWQwaAdLgGgIR0BTmaLsKLKndX2UKGgGR8BNTAZ0jkdWaAdLYWgIR0BTpAl4TsY3dX2UKGgGR8A7ab0e2d/baAdLhmgIR0BTpVklNUOvdX2UKGgGR8A0XHVPN3W4aAdLgGgIR0BTuTkMkQf7dX2UKGgGR8BKbxwZOzppaAdLV2gIR0BTu0yckMTfdX2UKGgGR8BSTd+9alk6aAdLkWgIR0BTvbhaTwDvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a09c97be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a09c97c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a09c97d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a09c97d90>", "_build": "<function ActorCriticPolicy._build at 0x7f6a09c97e20>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a09c97eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a09c97f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a09cac040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a09cac0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a09cac160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a09cac1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a09cac280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6a09c99640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694100833644088937, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOScT1CF6s/fw+RPt571b7IExK/SmtsvgAAAAAAAAAAcwW7vuJThz8WN4O/ICg1v5yANT/qqaQ+AAAAAAAAAACzdxw/MqphPxP9oz+ARFq/XgZqvyqWlr4AAAAAAAAAAEBv1T3R14I/Q3z5PoGdc7+MXB2+8l6MvgAAAAAAAAAAA7U1vwRXnD+rDoi/c8Nuv8CyfD9dx98+AAAAAAAAAADaN+m9cedhuxpepD2ULam/6Nfivo16Dj4AAIA/AAAAAM2PrTxwa8g/p7gHPu051D4DrCC8bbGZvQAAAAAAAAAAbfNQPvOpUT9Ks+M+1Ep2v1SFlb728Zm9AAAAAAAAAAB4MaW+HAQIP0orTL8fgZa/Q5qNPrrMUj4AAAAAAAAAAF3kSj9fRDw+KoWUP6Mgtb/pnlG/fYhxPQAAgD8AAAAAmkVkPpeTOj/JExk/dTeRv6xXGr9KYse+AAAAAAAAAAC2SJo+QG1EP3iOIz/bcGm/jCLLvjEHqL4AAAAAAAAAAE2sAz5wHcg/nsvePtBSBDwx9mq+EgszvgAAAAAAAAAA5n48Panttz8haUU+tlUDvoug6TxTCh8+AAAAAAAAAADNqF68ziW4PwOjKr6WHco9JheUO8NsWL0AAAAAAAAAADODyjsqO7Y/wISrPbslZrwarYO8s1JxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGNUnNxEORWMAWyUS1KMAXSUR0BCymf5DZ13dX2UKGgGR8BYzkWl/H5raAdLP2gIR0BC1udoWYWtdX2UKGgGR8Bk81NJvo/zaAdLbmgIR0BC2wRoRIz4dX2UKGgGR8BvMLn/1g6VaAdLUWgIR0BC20ypJf6XdX2UKGgGR8BzufznRsuWaAdLWmgIR0BC54/eLvTgdX2UKGgGR8BYkS5VfeDWaAdLfWgIR0BC6elCTlkpdX2UKGgGR8B1BeM5wOvuaAdLeWgIR0BC60D+zdDZdX2UKGgGR8BllFkxyn1naAdLamgIR0BC66Gxlg+hdX2UKGgGR8BrOOG7BfrsaAdLbGgIR0BC6pNCZ4OddX2UKGgGR8BwKY20iQkpaAdLRmgIR0BC78SPEKmbdX2UKGgGR8Akhn13+uNhaAdLaGgIR0BC7034sVcmdX2UKGgGR8BUtB1klNUPaAdLSWgIR0BC8JljEvTPdX2UKGgGR8Bfdwgs9SuRaAdLYGgIR0BC9JCrtE5RdX2UKGgGR8Bo5j3AVO9GaAdLX2gIR0BC9A8KXv6TdX2UKGgGR8B7i1P+GXXzaAdLWmgIR0BC9YYrJ8v3dX2UKGgGR8BntryMDOkdaAdLfWgIR0BC/NCiRGMGdX2UKGgGR8BaFYldC3PSaAdLU2gIR0BDCAdGRV6vdX2UKGgGR8BikaP4mCyyaAdLV2gIR0BDDm65Gz8hdX2UKGgGR8BseQ9zOopAaAdLeWgIR0BDEcCxNZeSdX2UKGgGR8BggsMb3oLYaAdLY2gIR0BDFYlhPTG6dX2UKGgGR8BQW0CA+Y+jaAdLS2gIR0BDFXXI2fkFdX2UKGgGR8BRx6veP7vYaAdLTWgIR0BDGB4D9wWFdX2UKGgGR8BXEzzRQaaTaAdLSGgIR0BDGV0tAcDKdX2UKGgGR8BjzTJbMX7+aAdLTGgIR0BDHFjmSyMUdX2UKGgGR8B4docdYGMXaAdLXmgIR0BDHix3V09ydX2UKGgGR8BnLxVAAyVOaAdLbGgIR0BDKeNcW0qpdX2UKGgGR8B0s6Xb/Ot5aAdLaWgIR0BDLCgbp/wzdX2UKGgGR8AwguLaVUuMaAdLcWgIR0BDLBYV6/qPdX2UKGgGR8Blrezv7WNFaAdLYmgIR0BDLR5C4SYgdX2UKGgGR8BpUx73PAwgaAdLamgIR0BDMhkqc3ERdX2UKGgGR8BcnVs1sLv1aAdLZ2gIR0BDMXNcGC7LdX2UKGgGR8BVzD9CNS62aAdLQWgIR0BDNGQCCBf8dX2UKGgGR8BXpxrBTGYKaAdLSWgIR0BDPAezUqhEdX2UKGgGR8Bh12U8mrsCaAdLRmgIR0BDPfViF0xNdX2UKGgGR8Bn5BN/OMVDaAdLeGgIR0BDQmMfigkDdX2UKGgGR8BZ8qpLmITHaAdLSmgIR0BDRS1mapgkdX2UKGgGR8Biev+OwPiDaAdLTGgIR0BDSWAXl8w6dX2UKGgGR8Bacg6p5u63aAdLW2gIR0BDSyn1nM+vdX2UKGgGR8Bi3CpBHCoCaAdLTGgIR0BDS3HBDXvqdX2UKGgGR8BimSUs4DLbaAdLPWgIR0BDULGBFuvVdX2UKGgGR8BunzxRVIZqaAdLf2gIR0BDU+9Jz1brdX2UKGgGR8BV9titq59WaAdLQ2gIR0BDVIUahpQDdX2UKGgGR8BsQBf6XSjQaAdLUmgIR0BDWufukUKzdX2UKGgGR8BdnkRaouPFaAdLRWgIR0BDW57PY4ACdX2UKGgGR8BsbMvboKUnaAdLSWgIR0BDXTNliBoVdX2UKGgGR8BP0t21UlzEaAdLimgIR0BDadYGMXJpdX2UKGgGR8Bt0TT4L1EmaAdLbWgIR0BDboeYD1XedX2UKGgGR8Bxbye9SMtLaAdLVmgIR0BDcNlI3BHkdX2UKGgGR8BareHSF49paAdLTWgIR0BDcgy2x6fKdX2UKGgGR8BcIDm4iHIqaAdLbGgIR0BDdg/LTx5LdX2UKGgGR8BdrNMK1G9YaAdLX2gIR0BDeE2pAD7qdX2UKGgGR8BayOxSpBHDaAdLUWgIR0BDelPBSDRMdX2UKGgGR8BOli1Z1V5saAdLP2gIR0BDkPy08eS0dX2UKGgGR8Bu+OmUGFBZaAdLWmgIR0BDkgJTl1bJdX2UKGgGR8B8VatDD0lJaAdLgGgIR0BDkydvsJIEdX2UKGgGR8Bpa6BmPHT7aAdLaWgIR0BDk+IEbHZLdX2UKGgGR8B3pFQyhzvJaAdLf2gIR0BDmPnKW9lFdX2UKGgGR8BeYCaiKziTaAdLdWgIR0BDmHc+JP69dX2UKGgGR8BxJO2MKkVOaAdLYWgIR0BDmVkUbkwOdX2UKGgGR8ByQvYoRZlnaAdLcmgIR0BDmk4WDYh/dX2UKGgGR8BqPVHFxXGPaAdLgmgIR0BDm1BdD6WPdX2UKGgGR8BTDt9YwIt2aAdLSmgIR0BDnmce8wpOdX2UKGgGR8BxeriuMdcTaAdLTWgIR0BDoNlRP421dX2UKGgGR8BoqmGCZnctaAdLU2gIR0BDoVZs9B8hdX2UKGgGR8BfKwV0tAcDaAdLSGgIR0BDognMMZxadX2UKGgGR8B1LtqASWZ7aAdLemgIR0BDpcneBQN1dX2UKGgGR8Bv+ediDujRaAdLVGgIR0BDqqQ7tAs1dX2UKGgGR8BuC+JYT0xuaAdLU2gIR0BDrBHTZxrBdX2UKGgGR8BiJvbypaRqaAdLOWgIR0BDupa7mMfjdX2UKGgGR8BdGJGvwEyMaAdLSGgIR0BDvBbfP5YYdX2UKGgGR8BLMy5y2hIwaAdLVGgIR0BDxIOpbUw0dX2UKGgGR8B0IKlSCOFQaAdLW2gIR0BDxwqqfe1sdX2UKGgGR8BivgCyQgcMaAdLTWgIR0BDzD8tPHktdX2UKGgGR8B1rX6oESuhaAdLXWgIR0BDz+hoM8YAdX2UKGgGR8BUi4oRZlnRaAdLPGgIR0BD0UDdP+GXdX2UKGgGR8BSAYFFDv3KaAdLR2gIR0BD1jMV1wHadX2UKGgGR8BjVZ5TqB3BaAdLZmgIR0BD1iGFi8WcdX2UKGgGR8B0ElcE/0NCaAdLd2gIR0BD2bJ4jbBXdX2UKGgGR8BgTD1wo9cKaAdLX2gIR0BD2oNNJvpAdX2UKGgGR8BhWjQZ4wAVaAdLdGgIR0BD3o1k1/DtdX2UKGgGR8B2Q0rz5GjLaAdLYmgIR0BD4RB/qgRLdX2UKGgGR8Bh+090Rvm6aAdLdWgIR0BD4DYywfQsdX2UKGgGR8B6EPsByS3caAdLaWgIR0BD4VTisGPgdX2UKGgGR8BW36MaS9uhaAdLQ2gIR0BD5npbD/EPdX2UKGgGR8BX2hbwBo25aAdLdGgIR0BD5nJLdvbXdX2UKGgGR8BUvDWK/EflaAdLO2gIR0BD6x2KVII4dX2UKGgGR8BjYpBLPD51aAdLTWgIR0BD6vHLidaudX2UKGgGR8Bbi3FHavicaAdLT2gIR0BD+baAWi1zdX2UKGgGR8BhxoXKr7wbaAdLR2gIR0BD+KS5iExqdX2UKGgGR8BgJHQnhKlIaAdLUGgIR0BEBAYgq3EydX2UKGgGR8BfRiDujRD1aAdLT2gIR0BEA13MY/FBdX2UKGgGR8BvpGY+jdpJaAdLUGgIR0BECB/y5I6KdX2UKGgGR8BYlz28IzFdaAdLb2gIR0BEB1OTJQtSdX2UKGgGR8Bi9jiVB2OiaAdLXGgIR0BEByA6Mir1dX2UKGgGR8BuPEUwi7kGaAdLT2gIR0BEDcOCoS+QdX2UKGgGR8BqV5XuE25yaAdLUGgIR0BEFMl1KXfJdX2UKGgGR8BxG04jrzGxaAdLW2gIR0BEFe3hGYrsdX2UKGgGR8Baya2fChvjaAdLYGgIR0BEGLjxTbWVdX2UKGgGR8BcdNUS7GvPaAdLcWgIR0BEHCpNsWO7dX2UKGgGR8BziRAIIF/yaAdLamgIR0BEHCgTRIBjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7f5924715b99bb76518492d976c50776df0b1ec791c1acc8ebabda803a41080
|
3 |
+
size 146614
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a09c97be0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a09c97c70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a09c97d00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a09c97d90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6a09c97e20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6a09c97eb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6a09c97f40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a09cac040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6a09cac0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a09cac160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a09cac1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a09cac280>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6a09c99640>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1694100833644088937,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOScT1CF6s/fw+RPt571b7IExK/SmtsvgAAAAAAAAAAcwW7vuJThz8WN4O/ICg1v5yANT/qqaQ+AAAAAAAAAACzdxw/MqphPxP9oz+ARFq/XgZqvyqWlr4AAAAAAAAAAEBv1T3R14I/Q3z5PoGdc7+MXB2+8l6MvgAAAAAAAAAAA7U1vwRXnD+rDoi/c8Nuv8CyfD9dx98+AAAAAAAAAADaN+m9cedhuxpepD2ULam/6Nfivo16Dj4AAIA/AAAAAM2PrTxwa8g/p7gHPu051D4DrCC8bbGZvQAAAAAAAAAAbfNQPvOpUT9Ks+M+1Ep2v1SFlb728Zm9AAAAAAAAAAB4MaW+HAQIP0orTL8fgZa/Q5qNPrrMUj4AAAAAAAAAAF3kSj9fRDw+KoWUP6Mgtb/pnlG/fYhxPQAAgD8AAAAAmkVkPpeTOj/JExk/dTeRv6xXGr9KYse+AAAAAAAAAAC2SJo+QG1EP3iOIz/bcGm/jCLLvjEHqL4AAAAAAAAAAE2sAz5wHcg/nsvePtBSBDwx9mq+EgszvgAAAAAAAAAA5n48Panttz8haUU+tlUDvoug6TxTCh8+AAAAAAAAAADNqF68ziW4PwOjKr6WHco9JheUO8NsWL0AAAAAAAAAADODyjsqO7Y/wISrPbslZrwarYO8s1JxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.6384000000000001,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGNUnNxEORWMAWyUS1KMAXSUR0BCymf5DZ13dX2UKGgGR8BYzkWl/H5raAdLP2gIR0BC1udoWYWtdX2UKGgGR8Bk81NJvo/zaAdLbmgIR0BC2wRoRIz4dX2UKGgGR8BvMLn/1g6VaAdLUWgIR0BC20ypJf6XdX2UKGgGR8BzufznRsuWaAdLWmgIR0BC54/eLvTgdX2UKGgGR8BYkS5VfeDWaAdLfWgIR0BC6elCTlkpdX2UKGgGR8B1BeM5wOvuaAdLeWgIR0BC60D+zdDZdX2UKGgGR8BllFkxyn1naAdLamgIR0BC66Gxlg+hdX2UKGgGR8BrOOG7BfrsaAdLbGgIR0BC6pNCZ4OddX2UKGgGR8BwKY20iQkpaAdLRmgIR0BC78SPEKmbdX2UKGgGR8Akhn13+uNhaAdLaGgIR0BC7034sVcmdX2UKGgGR8BUtB1klNUPaAdLSWgIR0BC8JljEvTPdX2UKGgGR8Bfdwgs9SuRaAdLYGgIR0BC9JCrtE5RdX2UKGgGR8Bo5j3AVO9GaAdLX2gIR0BC9A8KXv6TdX2UKGgGR8B7i1P+GXXzaAdLWmgIR0BC9YYrJ8v3dX2UKGgGR8BntryMDOkdaAdLfWgIR0BC/NCiRGMGdX2UKGgGR8BaFYldC3PSaAdLU2gIR0BDCAdGRV6vdX2UKGgGR8BikaP4mCyyaAdLV2gIR0BDDm65Gz8hdX2UKGgGR8BseQ9zOopAaAdLeWgIR0BDEcCxNZeSdX2UKGgGR8BggsMb3oLYaAdLY2gIR0BDFYlhPTG6dX2UKGgGR8BQW0CA+Y+jaAdLS2gIR0BDFXXI2fkFdX2UKGgGR8BRx6veP7vYaAdLTWgIR0BDGB4D9wWFdX2UKGgGR8BXEzzRQaaTaAdLSGgIR0BDGV0tAcDKdX2UKGgGR8BjzTJbMX7+aAdLTGgIR0BDHFjmSyMUdX2UKGgGR8B4docdYGMXaAdLXmgIR0BDHix3V09ydX2UKGgGR8BnLxVAAyVOaAdLbGgIR0BDKeNcW0qpdX2UKGgGR8B0s6Xb/Ot5aAdLaWgIR0BDLCgbp/wzdX2UKGgGR8AwguLaVUuMaAdLcWgIR0BDLBYV6/qPdX2UKGgGR8Blrezv7WNFaAdLYmgIR0BDLR5C4SYgdX2UKGgGR8BpUx73PAwgaAdLamgIR0BDMhkqc3ERdX2UKGgGR8BcnVs1sLv1aAdLZ2gIR0BDMXNcGC7LdX2UKGgGR8BVzD9CNS62aAdLQWgIR0BDNGQCCBf8dX2UKGgGR8BXpxrBTGYKaAdLSWgIR0BDPAezUqhEdX2UKGgGR8Bh12U8mrsCaAdLRmgIR0BDPfViF0xNdX2UKGgGR8Bn5BN/OMVDaAdLeGgIR0BDQmMfigkDdX2UKGgGR8BZ8qpLmITHaAdLSmgIR0BDRS1mapgkdX2UKGgGR8Biev+OwPiDaAdLTGgIR0BDSWAXl8w6dX2UKGgGR8Bacg6p5u63aAdLW2gIR0BDSyn1nM+vdX2UKGgGR8Bi3CpBHCoCaAdLTGgIR0BDS3HBDXvqdX2UKGgGR8BimSUs4DLbaAdLPWgIR0BDULGBFuvVdX2UKGgGR8BunzxRVIZqaAdLf2gIR0BDU+9Jz1brdX2UKGgGR8BV9titq59WaAdLQ2gIR0BDVIUahpQDdX2UKGgGR8BsQBf6XSjQaAdLUmgIR0BDWufukUKzdX2UKGgGR8BdnkRaouPFaAdLRWgIR0BDW57PY4ACdX2UKGgGR8BsbMvboKUnaAdLSWgIR0BDXTNliBoVdX2UKGgGR8BP0t21UlzEaAdLimgIR0BDadYGMXJpdX2UKGgGR8Bt0TT4L1EmaAdLbWgIR0BDboeYD1XedX2UKGgGR8Bxbye9SMtLaAdLVmgIR0BDcNlI3BHkdX2UKGgGR8BareHSF49paAdLTWgIR0BDcgy2x6fKdX2UKGgGR8BcIDm4iHIqaAdLbGgIR0BDdg/LTx5LdX2UKGgGR8BdrNMK1G9YaAdLX2gIR0BDeE2pAD7qdX2UKGgGR8BayOxSpBHDaAdLUWgIR0BDelPBSDRMdX2UKGgGR8BOli1Z1V5saAdLP2gIR0BDkPy08eS0dX2UKGgGR8Bu+OmUGFBZaAdLWmgIR0BDkgJTl1bJdX2UKGgGR8B8VatDD0lJaAdLgGgIR0BDkydvsJIEdX2UKGgGR8Bpa6BmPHT7aAdLaWgIR0BDk+IEbHZLdX2UKGgGR8B3pFQyhzvJaAdLf2gIR0BDmPnKW9lFdX2UKGgGR8BeYCaiKziTaAdLdWgIR0BDmHc+JP69dX2UKGgGR8BxJO2MKkVOaAdLYWgIR0BDmVkUbkwOdX2UKGgGR8ByQvYoRZlnaAdLcmgIR0BDmk4WDYh/dX2UKGgGR8BqPVHFxXGPaAdLgmgIR0BDm1BdD6WPdX2UKGgGR8BTDt9YwIt2aAdLSmgIR0BDnmce8wpOdX2UKGgGR8BxeriuMdcTaAdLTWgIR0BDoNlRP421dX2UKGgGR8BoqmGCZnctaAdLU2gIR0BDoVZs9B8hdX2UKGgGR8BfKwV0tAcDaAdLSGgIR0BDognMMZxadX2UKGgGR8B1LtqASWZ7aAdLemgIR0BDpcneBQN1dX2UKGgGR8Bv+ediDujRaAdLVGgIR0BDqqQ7tAs1dX2UKGgGR8BuC+JYT0xuaAdLU2gIR0BDrBHTZxrBdX2UKGgGR8BiJvbypaRqaAdLOWgIR0BDupa7mMfjdX2UKGgGR8BdGJGvwEyMaAdLSGgIR0BDvBbfP5YYdX2UKGgGR8BLMy5y2hIwaAdLVGgIR0BDxIOpbUw0dX2UKGgGR8B0IKlSCOFQaAdLW2gIR0BDxwqqfe1sdX2UKGgGR8BivgCyQgcMaAdLTWgIR0BDzD8tPHktdX2UKGgGR8B1rX6oESuhaAdLXWgIR0BDz+hoM8YAdX2UKGgGR8BUi4oRZlnRaAdLPGgIR0BD0UDdP+GXdX2UKGgGR8BSAYFFDv3KaAdLR2gIR0BD1jMV1wHadX2UKGgGR8BjVZ5TqB3BaAdLZmgIR0BD1iGFi8WcdX2UKGgGR8B0ElcE/0NCaAdLd2gIR0BD2bJ4jbBXdX2UKGgGR8BgTD1wo9cKaAdLX2gIR0BD2oNNJvpAdX2UKGgGR8BhWjQZ4wAVaAdLdGgIR0BD3o1k1/DtdX2UKGgGR8B2Q0rz5GjLaAdLYmgIR0BD4RB/qgRLdX2UKGgGR8Bh+090Rvm6aAdLdWgIR0BD4DYywfQsdX2UKGgGR8B6EPsByS3caAdLaWgIR0BD4VTisGPgdX2UKGgGR8BW36MaS9uhaAdLQ2gIR0BD5npbD/EPdX2UKGgGR8BX2hbwBo25aAdLdGgIR0BD5nJLdvbXdX2UKGgGR8BUvDWK/EflaAdLO2gIR0BD6x2KVII4dX2UKGgGR8BjYpBLPD51aAdLTWgIR0BD6vHLidaudX2UKGgGR8Bbi3FHavicaAdLT2gIR0BD+baAWi1zdX2UKGgGR8BhxoXKr7wbaAdLR2gIR0BD+KS5iExqdX2UKGgGR8BgJHQnhKlIaAdLUGgIR0BEBAYgq3EydX2UKGgGR8BfRiDujRD1aAdLT2gIR0BEA13MY/FBdX2UKGgGR8BvpGY+jdpJaAdLUGgIR0BECB/y5I6KdX2UKGgGR8BYlz28IzFdaAdLb2gIR0BEB1OTJQtSdX2UKGgGR8Bi9jiVB2OiaAdLXGgIR0BEByA6Mir1dX2UKGgGR8BuPEUwi7kGaAdLT2gIR0BEDcOCoS+QdX2UKGgGR8BqV5XuE25yaAdLUGgIR0BEFMl1KXfJdX2UKGgGR8BxG04jrzGxaAdLW2gIR0BEFe3hGYrsdX2UKGgGR8Baya2fChvjaAdLYGgIR0BEGLjxTbWVdX2UKGgGR8BcdNUS7GvPaAdLcWgIR0BEHCpNsWO7dX2UKGgGR8BziRAIIF/yaAdLamgIR0BEHCgTRIBjdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 4,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16c95328679d231a79c0880911ed1b2e8bb3368b2d1f2c58d0081f009f675c2c
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:967534fb17a4cb0b89cb0e8669c8eefef54ec39ec8c5127e0d91f6a633f8a331
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -94.71724125099354, "std_reward": 99.99347755980455, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-07T15:36:07.026752"}
|