--- license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner_twitter_fine_tune results: [] --- # ner_twitter_fine_tune This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4211 - Precision: 0.6078 - Recall: 0.5901 - F1: 0.5988 - Accuracy: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 56 | 0.3586 | 0.6358 | 0.5660 | 0.5989 | 0.9323 | | No log | 2.0 | 112 | 0.3618 | 0.6069 | 0.5746 | 0.5903 | 0.9297 | | No log | 3.0 | 168 | 0.3722 | 0.5956 | 0.6038 | 0.5997 | 0.9306 | | No log | 4.0 | 224 | 0.3993 | 0.6060 | 0.5883 | 0.5970 | 0.9301 | | No log | 5.0 | 280 | 0.4102 | 0.5411 | 0.6329 | 0.5834 | 0.9232 | | No log | 6.0 | 336 | 0.4077 | 0.6097 | 0.5815 | 0.5953 | 0.9319 | | No log | 7.0 | 392 | 0.4096 | 0.5858 | 0.6089 | 0.5971 | 0.9286 | | No log | 8.0 | 448 | 0.4169 | 0.5975 | 0.5832 | 0.5903 | 0.9297 | | 0.0111 | 9.0 | 504 | 0.4208 | 0.6064 | 0.5866 | 0.5963 | 0.9309 | | 0.0111 | 10.0 | 560 | 0.4211 | 0.6078 | 0.5901 | 0.5988 | 0.9308 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0 - Tokenizers 0.15.2