Commit
·
3b54ba5
1
Parent(s):
de7446f
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
|
3 |
+
tags:
|
4 |
+
- SOLAR
|
5 |
+
- instruct
|
6 |
+
- finetune
|
7 |
+
model-index:
|
8 |
+
- name: NaturalQuery-Solar-6.7B-v0.1
|
9 |
+
results: []
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
datasets:
|
14 |
+
- wikisql
|
15 |
+
---
|
16 |
+
|
17 |
+
# **NaturalQuery-Solar-6.7B-v0.1**
|
18 |
+
|
19 |
+
**NaturalQuery** is a LLM that can translate natural language queries to SQL based on your schema.
|
20 |
+
|
21 |
+
NaturalQuery-v0.1 is finetuned on 8k text to PostgreSQL Natural Language <> SQL pairs.
|
22 |
+
|
23 |
+
**Future Improvements**:
|
24 |
+
|
25 |
+
- Much larger training set
|
26 |
+
- More complex schemas, questions, and queries
|
27 |
+
- Reward modeling via DPO
|
28 |
+
- Benchmarking
|
29 |
+
|
30 |
+
# **Usage**
|
31 |
+
|
32 |
+
Make sure you have the correct version of the transformers library installed:
|
33 |
+
|
34 |
+
```sh
|
35 |
+
pip install transformers==4.35.2
|
36 |
+
```
|
37 |
+
|
38 |
+
### **Loading the Model**
|
39 |
+
|
40 |
+
Use the following Python code to load the model:
|
41 |
+
|
42 |
+
```python
|
43 |
+
import torch
|
44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("cfahlgren1/NaturalSQL-6.7B-v0")
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
"cfahlgren1/NaturalSQL-6.7B-v0",
|
48 |
+
device_map="auto",
|
49 |
+
torch_dtype=torch.float16,
|
50 |
+
)
|
51 |
+
```
|
52 |
+
|
53 |
+
### **Generating Text**
|
54 |
+
|
55 |
+
To generate text, use the following Python code:
|
56 |
+
|
57 |
+
```python
|
58 |
+
text = "Hi, my name is "
|
59 |
+
inputs = tokenizer(text, return_tensors="pt")
|
60 |
+
outputs = model.generate(**inputs, max_new_tokens=64)
|
61 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
62 |
+
```
|
63 |
+
|
64 |
+
|
65 |
+
# **SQL Generation Template**
|
66 |
+
|
67 |
+
```
|
68 |
+
### Task
|
69 |
+
|
70 |
+
Generate a SQL query to answer the following question: `{natural language question}`
|
71 |
+
|
72 |
+
### Database Schema
|
73 |
+
|
74 |
+
The query will run on a database with the following schema:
|
75 |
+
|
76 |
+
'''
|
77 |
+
<SQL Table DDL Statements>
|
78 |
+
'''
|
79 |
+
|
80 |
+
### Answer
|
81 |
+
Here is the SQL query that answers the question: `{natural language question}`
|
82 |
+
'''sql
|
83 |
+
```
|
84 |
+
|
85 |
+
# **Example SQL Output**
|
86 |
+
|
87 |
+
### **Example Schemas**
|
88 |
+
|
89 |
+
```sql
|
90 |
+
CREATE TABLE
|
91 |
+
table_1_11545282_6 (
|
92 |
+
"No." numeric,
|
93 |
+
Nationality text,
|
94 |
+
"Years for Jazz" text
|
95 |
+
);
|
96 |
+
|
97 |
+
CREATE TABLE
|
98 |
+
table_2_17383560_1 (
|
99 |
+
Pick numeric,
|
100 |
+
Round numeric,
|
101 |
+
Player text,
|
102 |
+
"School/Club Team" text,
|
103 |
+
Position text
|
104 |
+
);
|
105 |
+
|
106 |
+
CREATE TABLE
|
107 |
+
table_1_10581768_2 (
|
108 |
+
Institution text,
|
109 |
+
Enrollment numeric,
|
110 |
+
Nickname text,
|
111 |
+
Founded numeric
|
112 |
+
);
|
113 |
+
```
|
114 |
+
|
115 |
+
**Question**: **What is the round of pick 63?**
|
116 |
+
```sql
|
117 |
+
SELECT "Round" FROM table_2_17383560_1 WHERE Pick=63;
|
118 |
+
```
|
119 |
+
**Question**: **What is the most popular position among players?**
|
120 |
+
```sql
|
121 |
+
SELECT COUNT("Position") FROM "table_2_17383560_1" GROUP BY "Position" ORDER BY COUNT("Position") DESC LIMIT 1;
|
122 |
+
```
|
123 |
+
|
124 |
+
**Question**: **What is the most recent year an institution was founded?**
|
125 |
+
```sql
|
126 |
+
SELECT MAX("Founded") FROM table_1_10581768_2;
|
127 |
+
```
|