Commit
·
2826fcd
1
Parent(s):
5291503
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: plant-seedlings-resnet-152
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9146715776550031
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# plant-seedlings-resnet-152
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2604
|
35 |
+
- Accuracy: 0.9147
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0002
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 20
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 2.175 | 0.53 | 100 | 2.1135 | 0.3247 |
|
68 |
+
| 1.146 | 1.06 | 200 | 1.0761 | 0.6654 |
|
69 |
+
| 0.8299 | 1.6 | 300 | 0.7586 | 0.7391 |
|
70 |
+
| 0.7896 | 2.13 | 400 | 0.7093 | 0.7680 |
|
71 |
+
| 0.7327 | 2.66 | 500 | 0.5140 | 0.8207 |
|
72 |
+
| 0.5207 | 3.19 | 600 | 0.5375 | 0.8183 |
|
73 |
+
| 0.6465 | 3.72 | 700 | 0.4620 | 0.8465 |
|
74 |
+
| 0.2745 | 4.26 | 800 | 0.4784 | 0.8324 |
|
75 |
+
| 0.5366 | 4.79 | 900 | 0.4804 | 0.8355 |
|
76 |
+
| 0.4467 | 5.32 | 1000 | 0.4354 | 0.8551 |
|
77 |
+
| 0.3604 | 5.85 | 1100 | 0.3950 | 0.8680 |
|
78 |
+
| 0.2511 | 6.38 | 1200 | 0.4279 | 0.8594 |
|
79 |
+
| 0.326 | 6.91 | 1300 | 0.3677 | 0.8852 |
|
80 |
+
| 0.3444 | 7.45 | 1400 | 0.3539 | 0.8748 |
|
81 |
+
| 0.4015 | 7.98 | 1500 | 0.3161 | 0.8950 |
|
82 |
+
| 0.2821 | 8.51 | 1600 | 0.4394 | 0.8686 |
|
83 |
+
| 0.435 | 9.04 | 1700 | 0.3408 | 0.8920 |
|
84 |
+
| 0.3318 | 9.57 | 1800 | 0.3886 | 0.8778 |
|
85 |
+
| 0.2441 | 10.11 | 1900 | 0.2854 | 0.9042 |
|
86 |
+
| 0.2467 | 10.64 | 2000 | 0.3248 | 0.8883 |
|
87 |
+
| 0.2082 | 11.17 | 2100 | 0.3080 | 0.8956 |
|
88 |
+
| 0.1983 | 11.7 | 2200 | 0.3394 | 0.8963 |
|
89 |
+
| 0.2609 | 12.23 | 2300 | 0.3582 | 0.8870 |
|
90 |
+
| 0.2055 | 12.77 | 2400 | 0.3330 | 0.8963 |
|
91 |
+
| 0.3476 | 13.3 | 2500 | 0.2852 | 0.9091 |
|
92 |
+
| 0.223 | 13.83 | 2600 | 0.3115 | 0.8999 |
|
93 |
+
| 0.2307 | 14.36 | 2700 | 0.2986 | 0.9098 |
|
94 |
+
| 0.3113 | 14.89 | 2800 | 0.3103 | 0.8993 |
|
95 |
+
| 0.1792 | 15.43 | 2900 | 0.2862 | 0.9098 |
|
96 |
+
| 0.1685 | 15.96 | 3000 | 0.2935 | 0.9055 |
|
97 |
+
| 0.2429 | 16.49 | 3100 | 0.2882 | 0.9122 |
|
98 |
+
| 0.2548 | 17.02 | 3200 | 0.2748 | 0.9165 |
|
99 |
+
| 0.3561 | 17.55 | 3300 | 0.2684 | 0.9171 |
|
100 |
+
| 0.1982 | 18.09 | 3400 | 0.2647 | 0.9147 |
|
101 |
+
| 0.1638 | 18.62 | 3500 | 0.2509 | 0.9171 |
|
102 |
+
| 0.2404 | 19.15 | 3600 | 0.2936 | 0.9165 |
|
103 |
+
| 0.2424 | 19.68 | 3700 | 0.2604 | 0.9147 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.28.1
|
109 |
+
- Pytorch 2.0.0+cu118
|
110 |
+
- Datasets 2.11.0
|
111 |
+
- Tokenizers 0.13.3
|