--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: plant-seedlings-model-ResNet18-freeze-0-12-20ep results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9327111984282908 --- # plant-seedlings-model-ResNet18-freeze-0-12-20ep This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2060 - Accuracy: 0.9327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4528 | 0.25 | 128 | 0.6686 | 0.7878 | | 0.4291 | 0.5 | 256 | 0.6259 | 0.7903 | | 0.4961 | 0.75 | 384 | 0.5677 | 0.8055 | | 0.4637 | 1.01 | 512 | 0.5073 | 0.8330 | | 0.6897 | 1.26 | 640 | 0.5817 | 0.8060 | | 0.5257 | 1.51 | 768 | 0.5118 | 0.8276 | | 0.5381 | 1.76 | 896 | 0.4809 | 0.8384 | | 0.4736 | 2.01 | 1024 | 0.3976 | 0.8595 | | 0.4967 | 2.26 | 1152 | 0.4192 | 0.8566 | | 0.4505 | 2.51 | 1280 | 0.4128 | 0.8590 | | 0.4211 | 2.77 | 1408 | 0.4075 | 0.8576 | | 0.3877 | 3.02 | 1536 | 0.3796 | 0.8738 | | 0.3134 | 3.27 | 1664 | 0.3906 | 0.8762 | | 0.3596 | 3.52 | 1792 | 0.3703 | 0.8846 | | 0.3859 | 3.77 | 1920 | 0.3125 | 0.8954 | | 0.4076 | 4.02 | 2048 | 0.3718 | 0.8615 | | 0.3109 | 4.28 | 2176 | 0.3449 | 0.8924 | | 0.4588 | 4.53 | 2304 | 0.3377 | 0.8875 | | 0.2923 | 4.78 | 2432 | 0.3001 | 0.8998 | | 0.3273 | 5.03 | 2560 | 0.3187 | 0.8880 | | 0.2541 | 5.28 | 2688 | 0.3432 | 0.8856 | | 0.3059 | 5.53 | 2816 | 0.3236 | 0.8988 | | 0.2979 | 5.78 | 2944 | 0.3532 | 0.8851 | | 0.2748 | 6.04 | 3072 | 0.3407 | 0.8885 | | 0.3537 | 6.29 | 3200 | 0.2925 | 0.8988 | | 0.3364 | 6.54 | 3328 | 0.3071 | 0.9047 | | 0.2135 | 6.79 | 3456 | 0.2765 | 0.9077 | | 0.2023 | 7.04 | 3584 | 0.2919 | 0.9037 | | 0.1977 | 7.29 | 3712 | 0.2812 | 0.8978 | | 0.4042 | 7.54 | 3840 | 0.2954 | 0.8998 | | 0.3662 | 7.8 | 3968 | 0.2857 | 0.9018 | | 0.1872 | 8.05 | 4096 | 0.2504 | 0.9140 | | 0.3959 | 8.3 | 4224 | 0.2984 | 0.8993 | | 0.2403 | 8.55 | 4352 | 0.2847 | 0.8998 | | 0.3689 | 8.8 | 4480 | 0.2872 | 0.9023 | | 0.2819 | 9.05 | 4608 | 0.3104 | 0.9008 | | 0.1926 | 9.3 | 4736 | 0.2871 | 0.8969 | | 0.2371 | 9.56 | 4864 | 0.2733 | 0.9082 | | 0.2566 | 9.81 | 4992 | 0.2816 | 0.9101 | | 0.2174 | 10.06 | 5120 | 0.2719 | 0.9160 | | 0.2359 | 10.31 | 5248 | 0.2497 | 0.9175 | | 0.2986 | 10.56 | 5376 | 0.2847 | 0.9096 | | 0.2239 | 10.81 | 5504 | 0.2493 | 0.9180 | | 0.2132 | 11.06 | 5632 | 0.2567 | 0.9121 | | 0.1934 | 11.32 | 5760 | 0.2722 | 0.9028 | | 0.2026 | 11.57 | 5888 | 0.2456 | 0.9229 | | 0.2457 | 11.82 | 6016 | 0.2483 | 0.9234 | | 0.2537 | 12.07 | 6144 | 0.2409 | 0.9165 | | 0.193 | 12.32 | 6272 | 0.2215 | 0.9239 | | 0.1738 | 12.57 | 6400 | 0.2421 | 0.9165 | | 0.2925 | 12.83 | 6528 | 0.2499 | 0.9150 | | 0.1173 | 13.08 | 6656 | 0.2174 | 0.9258 | | 0.2147 | 13.33 | 6784 | 0.2917 | 0.9131 | | 0.1581 | 13.58 | 6912 | 0.2734 | 0.9175 | | 0.1349 | 13.83 | 7040 | 0.2485 | 0.9165 | | 0.1212 | 14.08 | 7168 | 0.2247 | 0.9268 | | 0.2178 | 14.33 | 7296 | 0.2289 | 0.9268 | | 0.0879 | 14.59 | 7424 | 0.2512 | 0.9219 | | 0.2006 | 14.84 | 7552 | 0.2321 | 0.9293 | | 0.2308 | 15.09 | 7680 | 0.2491 | 0.9263 | | 0.2137 | 15.34 | 7808 | 0.2270 | 0.9312 | | 0.1112 | 15.59 | 7936 | 0.2205 | 0.9249 | | 0.1477 | 15.84 | 8064 | 0.2328 | 0.9307 | | 0.1794 | 16.09 | 8192 | 0.2051 | 0.9332 | | 0.0596 | 16.35 | 8320 | 0.2234 | 0.9347 | | 0.0533 | 16.6 | 8448 | 0.2469 | 0.9293 | | 0.1096 | 16.85 | 8576 | 0.1871 | 0.9401 | | 0.1117 | 17.1 | 8704 | 0.2302 | 0.9249 | | 0.1349 | 17.35 | 8832 | 0.2084 | 0.9391 | | 0.1031 | 17.6 | 8960 | 0.2200 | 0.9283 | | 0.2428 | 17.85 | 9088 | 0.2201 | 0.9298 | | 0.1283 | 18.11 | 9216 | 0.2293 | 0.9273 | | 0.1688 | 18.36 | 9344 | 0.2120 | 0.9307 | | 0.0877 | 18.61 | 9472 | 0.2200 | 0.9229 | | 0.1508 | 18.86 | 9600 | 0.2204 | 0.9327 | | 0.0868 | 19.11 | 9728 | 0.2224 | 0.9293 | | 0.211 | 19.36 | 9856 | 0.1988 | 0.9401 | | 0.1059 | 19.61 | 9984 | 0.2082 | 0.9322 | | 0.182 | 19.87 | 10112 | 0.2060 | 0.9327 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3