--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: plant-seedlings-model-ConvNet results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9598726114649682 --- # plant-seedlings-model-ConvNet This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2134 - Accuracy: 0.9599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4223 | 0.8 | 100 | 0.2878 | 0.9140 | | 0.2957 | 1.6 | 200 | 0.2490 | 0.9204 | | 0.0884 | 2.4 | 300 | 0.2440 | 0.9293 | | 0.0534 | 3.2 | 400 | 0.2140 | 0.9350 | | 0.0067 | 4.0 | 500 | 0.1659 | 0.9554 | | 0.0038 | 4.8 | 600 | 0.1950 | 0.9548 | | 0.0061 | 5.6 | 700 | 0.1658 | 0.9618 | | 0.0029 | 6.4 | 800 | 0.1793 | 0.9599 | | 0.0004 | 7.2 | 900 | 0.2021 | 0.9592 | | 0.0003 | 8.0 | 1000 | 0.2115 | 0.9561 | | 0.0004 | 8.8 | 1100 | 0.2106 | 0.9561 | | 0.0002 | 9.6 | 1200 | 0.1929 | 0.9605 | | 0.0003 | 10.4 | 1300 | 0.2311 | 0.9548 | | 0.0002 | 11.2 | 1400 | 0.2091 | 0.9605 | | 0.0002 | 12.0 | 1500 | 0.2076 | 0.9586 | | 0.0001 | 12.8 | 1600 | 0.2084 | 0.9592 | | 0.0002 | 13.6 | 1700 | 0.2094 | 0.9605 | | 0.0001 | 14.4 | 1800 | 0.2104 | 0.9592 | | 0.0001 | 15.2 | 1900 | 0.2111 | 0.9592 | | 0.0001 | 16.0 | 2000 | 0.2117 | 0.9592 | | 0.0001 | 16.8 | 2100 | 0.2123 | 0.9592 | | 0.0001 | 17.6 | 2200 | 0.2128 | 0.9599 | | 0.0001 | 18.4 | 2300 | 0.2131 | 0.9599 | | 0.0001 | 19.2 | 2400 | 0.2134 | 0.9599 | | 0.0001 | 20.0 | 2500 | 0.2134 | 0.9599 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3