carolinetfls commited on
Commit
70883fa
·
1 Parent(s): 308cabb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: plant-seedlings-model-ConvNet
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9598726114649682
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # plant-seedlings-model-ConvNet
31
+
32
+ This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2134
35
+ - Accuracy: 0.9599
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0002
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 20
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.4223 | 0.8 | 100 | 0.2878 | 0.9140 |
68
+ | 0.2957 | 1.6 | 200 | 0.2490 | 0.9204 |
69
+ | 0.0884 | 2.4 | 300 | 0.2440 | 0.9293 |
70
+ | 0.0534 | 3.2 | 400 | 0.2140 | 0.9350 |
71
+ | 0.0067 | 4.0 | 500 | 0.1659 | 0.9554 |
72
+ | 0.0038 | 4.8 | 600 | 0.1950 | 0.9548 |
73
+ | 0.0061 | 5.6 | 700 | 0.1658 | 0.9618 |
74
+ | 0.0029 | 6.4 | 800 | 0.1793 | 0.9599 |
75
+ | 0.0004 | 7.2 | 900 | 0.2021 | 0.9592 |
76
+ | 0.0003 | 8.0 | 1000 | 0.2115 | 0.9561 |
77
+ | 0.0004 | 8.8 | 1100 | 0.2106 | 0.9561 |
78
+ | 0.0002 | 9.6 | 1200 | 0.1929 | 0.9605 |
79
+ | 0.0003 | 10.4 | 1300 | 0.2311 | 0.9548 |
80
+ | 0.0002 | 11.2 | 1400 | 0.2091 | 0.9605 |
81
+ | 0.0002 | 12.0 | 1500 | 0.2076 | 0.9586 |
82
+ | 0.0001 | 12.8 | 1600 | 0.2084 | 0.9592 |
83
+ | 0.0002 | 13.6 | 1700 | 0.2094 | 0.9605 |
84
+ | 0.0001 | 14.4 | 1800 | 0.2104 | 0.9592 |
85
+ | 0.0001 | 15.2 | 1900 | 0.2111 | 0.9592 |
86
+ | 0.0001 | 16.0 | 2000 | 0.2117 | 0.9592 |
87
+ | 0.0001 | 16.8 | 2100 | 0.2123 | 0.9592 |
88
+ | 0.0001 | 17.6 | 2200 | 0.2128 | 0.9599 |
89
+ | 0.0001 | 18.4 | 2300 | 0.2131 | 0.9599 |
90
+ | 0.0001 | 19.2 | 2400 | 0.2134 | 0.9599 |
91
+ | 0.0001 | 20.0 | 2500 | 0.2134 | 0.9599 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.28.1
97
+ - Pytorch 2.0.0+cu118
98
+ - Datasets 2.11.0
99
+ - Tokenizers 0.13.3