Commit
·
70883fa
1
Parent(s):
308cabb
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: plant-seedlings-model-ConvNet
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9598726114649682
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# plant-seedlings-model-ConvNet
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2134
|
35 |
+
- Accuracy: 0.9599
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0002
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 20
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.4223 | 0.8 | 100 | 0.2878 | 0.9140 |
|
68 |
+
| 0.2957 | 1.6 | 200 | 0.2490 | 0.9204 |
|
69 |
+
| 0.0884 | 2.4 | 300 | 0.2440 | 0.9293 |
|
70 |
+
| 0.0534 | 3.2 | 400 | 0.2140 | 0.9350 |
|
71 |
+
| 0.0067 | 4.0 | 500 | 0.1659 | 0.9554 |
|
72 |
+
| 0.0038 | 4.8 | 600 | 0.1950 | 0.9548 |
|
73 |
+
| 0.0061 | 5.6 | 700 | 0.1658 | 0.9618 |
|
74 |
+
| 0.0029 | 6.4 | 800 | 0.1793 | 0.9599 |
|
75 |
+
| 0.0004 | 7.2 | 900 | 0.2021 | 0.9592 |
|
76 |
+
| 0.0003 | 8.0 | 1000 | 0.2115 | 0.9561 |
|
77 |
+
| 0.0004 | 8.8 | 1100 | 0.2106 | 0.9561 |
|
78 |
+
| 0.0002 | 9.6 | 1200 | 0.1929 | 0.9605 |
|
79 |
+
| 0.0003 | 10.4 | 1300 | 0.2311 | 0.9548 |
|
80 |
+
| 0.0002 | 11.2 | 1400 | 0.2091 | 0.9605 |
|
81 |
+
| 0.0002 | 12.0 | 1500 | 0.2076 | 0.9586 |
|
82 |
+
| 0.0001 | 12.8 | 1600 | 0.2084 | 0.9592 |
|
83 |
+
| 0.0002 | 13.6 | 1700 | 0.2094 | 0.9605 |
|
84 |
+
| 0.0001 | 14.4 | 1800 | 0.2104 | 0.9592 |
|
85 |
+
| 0.0001 | 15.2 | 1900 | 0.2111 | 0.9592 |
|
86 |
+
| 0.0001 | 16.0 | 2000 | 0.2117 | 0.9592 |
|
87 |
+
| 0.0001 | 16.8 | 2100 | 0.2123 | 0.9592 |
|
88 |
+
| 0.0001 | 17.6 | 2200 | 0.2128 | 0.9599 |
|
89 |
+
| 0.0001 | 18.4 | 2300 | 0.2131 | 0.9599 |
|
90 |
+
| 0.0001 | 19.2 | 2400 | 0.2134 | 0.9599 |
|
91 |
+
| 0.0001 | 20.0 | 2500 | 0.2134 | 0.9599 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.28.1
|
97 |
+
- Pytorch 2.0.0+cu118
|
98 |
+
- Datasets 2.11.0
|
99 |
+
- Tokenizers 0.13.3
|