Update README.md
Browse files
README.md
CHANGED
@@ -1,46 +1,68 @@
|
|
1 |
-
|
2 |
-
tags:
|
3 |
-
- generated_from_keras_callback
|
4 |
-
model-index:
|
5 |
-
- name: tweet-topic-latest-multi
|
6 |
-
results: []
|
7 |
-
---
|
8 |
|
9 |
-
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
10 |
-
probably proofread and complete it, then remove this comment. -->
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
|
|
17 |
|
18 |
-
## Model description
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
## Intended uses & limitations
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
### Training results
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
1 |
+
# tweet-topic-latest-multi
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
3 |
|
4 |
+
This is a RoBERTa-base model trained on 168.86M tweets until the end of September 2022 and finetuned for multi-label topic classification on a corpus of 11,267 [tweets](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi).
|
5 |
+
The original RoBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-sep2022). This model is suitable for English.
|
6 |
|
7 |
+
- Reference Papers: [TimeLMs paper](https://arxiv.org/abs/2202.03829), [TweetTopic](https://arxiv.org/abs/2209.09824)
|
8 |
+
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).
|
9 |
|
10 |
+
<b>Labels</b>:
|
11 |
|
|
|
12 |
|
13 |
+
| <span style="font-weight:normal">0: arts_&_culture</span> | <span style="font-weight:normal">5: fashion_&_style</span> | <span style="font-weight:normal">10: learning_&_educational</span> | <span style="font-weight:normal">15: science_&_technology</span> |
|
14 |
+
|-----------------------------|---------------------|----------------------------|--------------------------|
|
15 |
+
| 1: business_&_entrepreneurs | 6: film_tv_&_video | 11: music | 16: sports |
|
16 |
+
| 2: celebrity_&_pop_culture | 7: fitness_&_health | 12: news_&_social_concern | 17: travel_&_adventure |
|
17 |
+
| 3: diaries_&_daily_life | 8: food_&_dining | 13: other_hobbies | 18: youth_&_student_life |
|
18 |
+
| 4: family | 9: gaming | 14: relationships | |
|
19 |
|
|
|
20 |
|
21 |
+
## Full classification example
|
22 |
|
23 |
+
```python
|
24 |
+
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
|
25 |
+
from transformers import AutoTokenizer
|
26 |
+
import numpy as np
|
27 |
+
from scipy.special import expit
|
28 |
|
29 |
+
|
30 |
+
MODEL = f"cardiffnlp/tweet-topic-latest-multi"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
32 |
|
33 |
+
# PT
|
34 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
35 |
+
class_mapping = model.config.id2label
|
36 |
|
37 |
+
text = "It is great to see athletes promoting awareness for climate change."
|
38 |
+
tokens = tokenizer(text, return_tensors='pt')
|
39 |
+
output = model(**tokens)
|
40 |
|
41 |
+
scores = output[0][0].detach().numpy()
|
42 |
+
scores = expit(scores)
|
43 |
+
predictions = (scores >= 0.5) * 1
|
44 |
|
|
|
45 |
|
46 |
+
# TF
|
47 |
+
#tf_model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
48 |
+
#class_mapping = tf_model.config.id2label
|
49 |
+
#text = "It is great to see athletes promoting awareness for climate change."
|
50 |
+
#tokens = tokenizer(text, return_tensors='tf')
|
51 |
+
#output = tf_model(**tokens)
|
52 |
+
#scores = output[0][0]
|
53 |
+
#scores = expit(scores)
|
54 |
+
#predictions = (scores >= 0.5) * 1
|
55 |
|
56 |
+
# Map to classes
|
57 |
+
for i in range(len(predictions)):
|
58 |
+
if predictions[i]:
|
59 |
+
print(class_mapping[i])
|
60 |
|
61 |
+
```
|
62 |
+
Output:
|
63 |
|
64 |
+
```
|
65 |
+
fitness_&_health
|
66 |
+
news_&_social_concern
|
67 |
+
sports
|
68 |
+
```
|