# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os from dataclasses import dataclass, is_dataclass from enum import Enum from functools import lru_cache from pathlib import Path from typing import List, Optional, Tuple, Union import wrapt from nemo.utils import AppState, logging from nemo.utils.data_utils import resolve_cache_dir # imported for compatibility: model_utils.resolve_cache_dir() from nemo.utils.data_utils import is_datastore_path # TODO @blisc: Perhaps refactor instead of import guarding _HAS_HYDRA = True try: from omegaconf import DictConfig, ListConfig, OmegaConf from omegaconf import errors as omegaconf_errors from packaging import version except ModuleNotFoundError: _HAS_HYDRA = False _VAL_TEST_FASTPATH_KEY = 'ds_item' class ArtifactPathType(Enum): """ ArtifactPathType refers to the type of the path that the artifact is located at. LOCAL_PATH: A user local filepath that exists on the file system. TAR_PATH: A (generally flattened) filepath that exists inside of an archive (that may have its own full path). """ LOCAL_PATH = 0 TAR_PATH = 1 @dataclass(init=False) class ArtifactItem: path: str path_type: ArtifactPathType hashed_path: Optional[str] = None def resolve_dataset_name_from_cfg(cfg: 'DictConfig') -> Optional[str]: """ Parses items of the provided sub-config to find the first potential key that resolves to an existing file or directory. # Fast-path Resolution In order to handle cases where we need to resolve items that are not paths, a fastpath key can be provided as defined in the global `_VAL_TEST_FASTPATH_KEY`. This key can be used in two ways : ## _VAL_TEST_FASTPATH_KEY points to another key in the config If this _VAL_TEST_FASTPATH_KEY points to another key in this config itself, then we assume we want to loop through the values of that key. This allows for any key in the config to become a fastpath key. Example: validation_ds: splits: "val" ... <_VAL_TEST_FASTPATH_KEY>: "splits" <-- this points to the key name "splits" Then we can write the following when overriding in hydra: ```python python train_file.py ... \ model.validation_ds.splits=[val1, val2, dev1, dev2] ... ``` ## _VAL_TEST_FASTPATH_KEY itself acts as the resolved key If this _VAL_TEST_FASTPATH_KEY does not point to another key in the config, then it is assumed that the items of this key itself are used for resolution. Example: validation_ds: ... <_VAL_TEST_FASTPATH_KEY>: "val" <-- this points to the key name "splits" Then we can write the following when overriding in hydra: ```python python train_file.py ... \ model.validation_ds.<_VAL_TEST_FASTPATH_KEY>=[val1, val2, dev1, dev2] ... ``` # IMPORTANT NOTE: It potentially mismatch if there exist more than 2 valid paths, and the first path does *not* resolve the the path of the data file (but does resolve to some other valid path). To avoid this side-effect, place the data path as the first item on the config file. Args: cfg: DictConfig (Sub-config) that should be parsed. Returns: A str representing the `key` of the config which hosts the filepath(s), or None in case path could not be resolved. """ if _VAL_TEST_FASTPATH_KEY in cfg and cfg[_VAL_TEST_FASTPATH_KEY] is not None: fastpath_key = cfg[_VAL_TEST_FASTPATH_KEY] if isinstance(fastpath_key, str) and fastpath_key in cfg: return cfg[fastpath_key] else: return _VAL_TEST_FASTPATH_KEY for key, value in cfg.items(): if type(value) in [list, tuple, ListConfig]: # Count the number of valid paths in the list values_are_paths = 0 for val_i in value: val_i = str(val_i) if os.path.exists(val_i) or os.path.isdir(val_i) or is_datastore_path(val_i): values_are_paths += 1 else: # reset counter and break inner loop break if values_are_paths == len(value): return key else: if os.path.exists(str(value)) or os.path.isdir(str(value)) or is_datastore_path(str(value)): return key return None def parse_dataset_as_name(name: str) -> str: """ Constructs a valid prefix-name from a provided file path. Args: name: str path to some valid data/manifest file or a python object that will be used as a name for the data loader (via str() cast). Returns: str prefix used to identify uniquely this data/manifest file. """ if os.path.exists(str(name)) or os.path.isdir(str(name)) or is_datastore_path(str(name)): name = Path(name).stem else: name = str(name) # cleanup name name = name.replace('-', '_') if 'manifest' in name: name = name.replace('manifest', '') if 'dataset' in name: name = name.replace('dataset', '') # Test if the manifes/dataset name was simply `manifest.yaml` or `dataset.yaml`: Invalid names. if name == '': raise ValueError( "Provided dataset / manifest filename was `manifest.json` or `dataset.json`.\n" "Such a name is invalid, since multiple datasets/manifests can share the same name,\n" "thereby overriding their results during logging. Please pick a more discriptive filename \n" "for the provided dataset / manifest file." ) if '_' != name[-1]: name = name + '_' return name def unique_names_check(name_list: Optional[List[str]]): """ Performs a uniqueness check on the name list resolved, so that it can warn users about non-unique keys. Args: name_list: List of strings resolved for data loaders. """ if name_list is None: return # Name uniqueness checks names = set() for name in name_list: if name in names: logging.warning( "Name resolution has found more than one data loader having the same name !\n" "In such cases, logs will nor be properly generated. " "Please rename the item to have unique names.\n" f"Resolved name : {name}" ) else: names.add(name) # we need just hash key check, value is just a placeholder def resolve_validation_dataloaders(model: 'ModelPT'): """ Helper method that operates on the ModelPT class to automatically support multiple dataloaders for the validation set. It does so by first resolving the path to one/more data files via `resolve_dataset_name_from_cfg()`. If this resolution fails, it assumes the data loader is prepared to manually support / not support multiple data loaders and simply calls the appropriate setup method. If resolution succeeds: Checks if provided path is to a single file or a list of files. If a single file is provided, simply tags that file as such and loads it via the setup method. If multiple files are provided: Inject a new manifest path at index "i" into the resolved key. Calls the appropriate setup method to set the data loader. Collects the initialized data loader in a list and preserves it. Once all data loaders are processed, assigns the list of loaded loaders to the ModelPT. Finally assigns a list of unique names resolved from the file paths to the ModelPT. Args: model: ModelPT subclass, which requires >=1 Validation Dataloaders to be setup. """ if not _HAS_HYDRA: logging.error("This function requires Hydra/Omegaconf and it was not installed.") exit(1) cfg = copy.deepcopy(model._cfg) dataloaders = [] # process val_loss_idx if 'val_dl_idx' in cfg.validation_ds: cfg = OmegaConf.to_container(cfg) val_dl_idx = cfg['validation_ds'].pop('val_dl_idx') cfg = OmegaConf.create(cfg) else: val_dl_idx = 0 # Set val_loss_idx model._val_dl_idx = val_dl_idx ds_key = resolve_dataset_name_from_cfg(cfg.validation_ds) if ds_key is None: logging.debug( "Could not resolve file path from provided config - {}. " "Disabling support for multi-dataloaders.".format(cfg.validation_ds) ) model.setup_validation_data(cfg.validation_ds) return ds_values = cfg.validation_ds[ds_key] if isinstance(ds_values, (list, tuple, ListConfig)): for ds_value in ds_values: cfg.validation_ds[ds_key] = ds_value model.setup_validation_data(cfg.validation_ds) dataloaders.append(model._validation_dl) model._validation_dl = dataloaders model._validation_names = [parse_dataset_as_name(ds) for ds in ds_values] unique_names_check(name_list=model._validation_names) return else: model.setup_validation_data(cfg.validation_ds) model._validation_names = [parse_dataset_as_name(ds_values)] unique_names_check(name_list=model._validation_names) def resolve_test_dataloaders(model: 'ModelPT'): """ Helper method that operates on the ModelPT class to automatically support multiple dataloaders for the test set. It does so by first resolving the path to one/more data files via `resolve_dataset_name_from_cfg()`. If this resolution fails, it assumes the data loader is prepared to manually support / not support multiple data loaders and simply calls the appropriate setup method. If resolution succeeds: Checks if provided path is to a single file or a list of files. If a single file is provided, simply tags that file as such and loads it via the setup method. If multiple files are provided: Inject a new manifest path at index "i" into the resolved key. Calls the appropriate setup method to set the data loader. Collects the initialized data loader in a list and preserves it. Once all data loaders are processed, assigns the list of loaded loaders to the ModelPT. Finally assigns a list of unique names resolved from the file paths to the ModelPT. Args: model: ModelPT subclass, which requires >=1 Test Dataloaders to be setup. """ if not _HAS_HYDRA: logging.error("This function requires Hydra/Omegaconf and it was not installed.") exit(1) cfg = copy.deepcopy(model._cfg) dataloaders = [] # process test_loss_idx if 'test_dl_idx' in cfg.test_ds: cfg = OmegaConf.to_container(cfg) test_dl_idx = cfg['test_ds'].pop('test_dl_idx') cfg = OmegaConf.create(cfg) else: test_dl_idx = 0 # Set val_loss_idx model._test_dl_idx = test_dl_idx ds_key = resolve_dataset_name_from_cfg(cfg.test_ds) if ds_key is None: logging.debug( "Could not resolve file path from provided config - {}. " "Disabling support for multi-dataloaders.".format(cfg.test_ds) ) model.setup_test_data(cfg.test_ds) return ds_values = cfg.test_ds[ds_key] if isinstance(ds_values, (list, tuple, ListConfig)): for ds_value in ds_values: cfg.test_ds[ds_key] = ds_value model.setup_test_data(cfg.test_ds) dataloaders.append(model._test_dl) model._test_dl = dataloaders model._test_names = [parse_dataset_as_name(ds) for ds in ds_values] unique_names_check(name_list=model._test_names) return else: model.setup_test_data(cfg.test_ds) model._test_names = [parse_dataset_as_name(ds_values)] unique_names_check(name_list=model._test_names) @wrapt.decorator def wrap_training_step(wrapped, instance: 'pl.LightningModule', args, kwargs): output_dict = wrapped(*args, **kwargs) if isinstance(output_dict, dict) and output_dict is not None and 'log' in output_dict: log_dict = output_dict.pop('log') instance.log_dict(log_dict, on_step=True) return output_dict def convert_model_config_to_dict_config(cfg: Union['DictConfig', 'NemoConfig']) -> 'DictConfig': """ Converts its input into a standard DictConfig. Possible input values are: - DictConfig - A dataclass which is a subclass of NemoConfig Args: cfg: A dict-like object. Returns: The equivalent DictConfig """ if not _HAS_HYDRA: logging.error("This function requires Hydra/Omegaconf and it was not installed.") exit(1) if not isinstance(cfg, (OmegaConf, DictConfig)) and is_dataclass(cfg): cfg = OmegaConf.structured(cfg) if not isinstance(cfg, DictConfig): raise ValueError(f"cfg constructor argument must be of type DictConfig/dict but got {type(cfg)} instead.") config = OmegaConf.to_container(cfg, resolve=True) config = OmegaConf.create(config) return config def _convert_config(cfg: 'OmegaConf'): """ Recursive function convertint the configuration from old hydra format to the new one. """ if not _HAS_HYDRA: logging.error("This function requires Hydra/Omegaconf and it was not installed.") exit(1) # Get rid of cls -> _target_. if 'cls' in cfg and '_target_' not in cfg: cfg._target_ = cfg.pop('cls') # Get rid of params. if 'params' in cfg: params = cfg.pop('params') for param_key, param_val in params.items(): cfg[param_key] = param_val # Recursion. try: for _, sub_cfg in cfg.items(): if isinstance(sub_cfg, DictConfig): _convert_config(sub_cfg) except omegaconf_errors.OmegaConfBaseException as e: logging.warning(f"Skipped conversion for config/subconfig:\n{cfg}\n Reason: {e}.") def maybe_update_config_version(cfg: 'DictConfig'): """ Recursively convert Hydra 0.x configs to Hydra 1.x configs. Changes include: - `cls` -> `_target_`. - `params` -> drop params and shift all arguments to parent. - `target` -> `_target_` cannot be performed due to ModelPT injecting `target` inside class. Args: cfg: Any Hydra compatible DictConfig Returns: An updated DictConfig that conforms to Hydra 1.x format. """ if not _HAS_HYDRA: logging.error("This function requires Hydra/Omegaconf and it was not installed.") exit(1) if cfg is not None and not isinstance(cfg, DictConfig): try: temp_cfg = OmegaConf.create(cfg) cfg = temp_cfg except omegaconf_errors.OmegaConfBaseException: # Cannot be cast to DictConfig, skip updating. return cfg # Make a copy of model config. cfg = copy.deepcopy(cfg) OmegaConf.set_struct(cfg, False) # Convert config. _convert_config(cfg) # Update model config. OmegaConf.set_struct(cfg, True) return cfg @lru_cache(maxsize=1024) def import_class_by_path(path: str): """ Recursive import of class by path string. """ paths = path.split('.') path = ".".join(paths[:-1]) class_name = paths[-1] mod = __import__(path, fromlist=[class_name]) mod = getattr(mod, class_name) return mod def resolve_subclass_pretrained_model_info(base_class) -> List['PretrainedModelInfo']: """ Recursively traverses the inheritance graph of subclasses to extract all pretrained model info. First constructs a set of unique pretrained model info by performing DFS over the inheritance graph. All model info belonging to the same class is added together. Args: base_class: The root class, whose subclass graph will be traversed. Returns: A list of unique pretrained model infos belonging to all of the inherited subclasses of this baseclass. """ list_of_models = set() def recursive_subclass_walk(cls): for subclass in cls.__subclasses__(): # step into its immediate subclass recursive_subclass_walk(subclass) subclass_models = subclass.list_available_models() if subclass_models is not None and len(subclass_models) > 0: # Inject subclass info into pretrained model info # if not already overriden by subclass for model_info in subclass_models: # If subclass manually injects class_, dont override. if model_info.class_ is None: model_info.class_ = subclass for model_info in subclass_models: list_of_models.add(model_info) recursive_subclass_walk(base_class) list_of_models = list(sorted(list_of_models)) return list_of_models def check_lib_version(lib_name: str, checked_version: str, operator) -> Tuple[Optional[bool], str]: """ Checks if a library is installed, and if it is, checks the operator(lib.__version__, checked_version) as a result. This bool result along with a string analysis of result is returned. If the library is not installed at all, then returns None instead, along with a string explaining that the library is not installed Args: lib_name: lower case str name of the library that must be imported. checked_version: semver string that is compared against lib.__version__. operator: binary callable function func(a, b) -> bool; that compares lib.__version__ against version in some manner. Must return a boolean. Returns: A tuple of results: - Bool or None. Bool if the library could be imported, and the result of operator(lib.__version__, checked_version) or False if __version__ is not implemented in lib. None is passed if the library is not installed at all. - A string analysis of the check. """ try: if '.' in lib_name: mod = import_class_by_path(lib_name) else: mod = __import__(lib_name) if hasattr(mod, '__version__'): lib_ver = version.Version(mod.__version__) match_ver = version.Version(checked_version) if operator(lib_ver, match_ver): msg = f"Lib {lib_name} version is satisfied !" return True, msg else: msg = ( f"Lib {lib_name} version ({lib_ver}) is not {operator.__name__} than required version {checked_version}.\n" f"Please upgrade the lib using either pip or conda to the latest version." ) return False, msg else: msg = ( f"Lib {lib_name} does not implement __version__ in its init file. " f"Could not check version compatibility." ) return False, msg except (ImportError, ModuleNotFoundError): pass msg = f"Lib {lib_name} has not been installed. Please use pip or conda to install this package." return None, msg def uninject_model_parallel_rank(filepath): filepath = str(filepath) if 'mp_rank' in filepath or 'tp_rank' in filepath: dirname = os.path.dirname(os.path.dirname(filepath)) basename = os.path.basename(filepath) filepath = os.path.join(dirname, basename) return filepath else: return filepath def inject_model_parallel_rank(filepath): """ Injects tensor/pipeline model parallel ranks into the filepath. Does nothing if not using model parallelism. """ # first make sure filepath does not have rank filepath = uninject_model_parallel_rank(filepath) app_state = AppState() if app_state.model_parallel_size is not None and app_state.model_parallel_size > 1: # filepath needs to be updated to include mp_rank dirname = os.path.dirname(filepath) basename = os.path.basename(filepath) if app_state.pipeline_model_parallel_size is None or app_state.pipeline_model_parallel_size == 1: filepath = f'{dirname}/mp_rank_{app_state.tensor_model_parallel_rank:02d}/{basename}' else: filepath = f'{dirname}/tp_rank_{app_state.tensor_model_parallel_rank:02d}_pp_rank_{app_state.pipeline_model_parallel_rank:03d}/{basename}' return filepath else: return filepath