# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from nemo.utils.env_var_parsing import get_envint def is_global_rank_zero(): """ Helper function to determine if the current process is global_rank 0 (the main process) """ # Try to get the pytorch RANK env var # RANK is set by torch.distributed.launch rank = get_envint("RANK", None) if rank is not None: return rank == 0 # Try to get the SLURM global rank env var # SLURM_PROCID is set by SLURM slurm_rank = get_envint("SLURM_PROCID", None) if slurm_rank is not None: return slurm_rank == 0 # if neither pytorch and SLURM env vars are set # check NODE_RANK/GROUP_RANK and LOCAL_RANK env vars # asume global_rank is zero if undefined node_rank = get_envint("NODE_RANK", get_envint("GROUP_RANK", 0)) local_rank = get_envint("LOCAL_RANK", 0) return node_rank == 0 and local_rank == 0 def get_rank(): """ Helper function that returns torch.distributed.get_rank() if DDP has been initialized otherwise it returns 0. """ if is_global_rank_zero(): return 0 else: return torch.distributed.get_rank()