# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from contextlib import nullcontext from enum import Enum from typing import Callable, Dict, Optional, Type import onnx import torch import torch.nn as nn import torch.nn.functional as F from nemo.utils import CastToFloat, CastToFloatAll, logging try: import onnxruntime ort_available = True except (ImportError, ModuleNotFoundError): ort_available = False class ExportFormat(Enum): """Which format to use when exporting a Neural Module for deployment""" ONNX = (1,) TORCHSCRIPT = (2,) _EXT_DICT = { ".pt": ExportFormat.TORCHSCRIPT, ".ts": ExportFormat.TORCHSCRIPT, ".onnx": ExportFormat.ONNX, } class TorchRMSNorm(nn.Module): def __init__(self, weight, eps=1e-6): """ LayerNorm without bias """ super().__init__() self.weight = weight self.variance_epsilon = eps def forward(self, hidden_states): # can be only calculated with precision=32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class LinearWithBiasSkip(nn.Module): def __init__(self, weight, bias, skip_bias_add): super(LinearWithBiasSkip, self).__init__() self.bias = bias self.weight = weight self.skip_bias_add = skip_bias_add def forward(self, x): if self.skip_bias_add: return F.linear(x, self.weight), self.bias return F.linear(x, self.weight, self.bias), None def get_export_format(filename: str): _, ext = os.path.splitext(filename) try: return _EXT_DICT[ext.lower()] except KeyError: raise ValueError(f"Export file {filename} extension does not correspond to any export format!") def augment_filename(output: str, prepend: str): if prepend == 'self': return output path, filename = os.path.split(output) filename = f"{prepend}-{filename}" return os.path.join(path, filename) def forward_method(self): if hasattr(self, "forward_for_export"): return self.forward_for_export else: return self.forward def wrap_forward_method(self): tp = type(self) old_forward_method = None if hasattr(tp, "forward_for_export"): forward_method = tp.forward_for_export old_forward_method = tp.forward tp.forward = forward_method else: forward_method = None return forward_method, old_forward_method def parse_input_example(input_example): input_list = list(input_example) input_dict = {} # process possible kwargs if isinstance(input_list[-1], dict): input_dict = input_list[-1] input_list = input_list[:-1] return input_list, input_dict def to_onnxrt_input(ort_input_names, input_names, input_dict, input_list): odict = {} for k in reversed(input_names): val = None if k in input_dict: val = input_dict[k].cpu().numpy() elif len(input_list) > 0: val = input_list.pop().cpu().numpy() if k in ort_input_names and val is not None: odict[k] = val return odict def verify_torchscript(model, output, input_examples, check_tolerance=0.01): all_good = True for input_example in input_examples: input_list, input_dict = parse_input_example(input_example) # We disable autocast here to make sure exported TS will run under Triton or other C++ env with torch.cuda.amp.autocast(enabled=False): output_example = model.forward(*input_list, **input_dict) ts_model = torch.jit.load(output) all_good = all_good and run_ts_and_compare( ts_model, input_list, input_dict, output_example, check_tolerance ) status = "SUCCESS" if all_good else "FAIL" logging.info(f"Torchscript generated at {output} verified with torchscript forward : " + status) return all_good def verify_runtime(model, output, input_examples, input_names, check_tolerance=0.01): onnx_model = onnx.load(output) ort_input_names = [node.name for node in onnx_model.graph.input] global ort_available if not ort_available: logging.warning(f"ONNX generated at {output}, not verified - please install onnxruntime_gpu package.\n") onnx.checker.check_model(onnx_model, full_check=True) return onnx_session_opt = onnxruntime.SessionOptions() onnx_session_opt.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC sess = onnxruntime.InferenceSession( onnx_model.SerializeToString(), sess_options=onnx_session_opt, providers=['CUDAExecutionProvider'] ) del onnx_model all_good = True for input_example in input_examples: input_list, input_dict = parse_input_example(input_example) output_example = model.forward(*input_list, **input_dict) ort_input = to_onnxrt_input(ort_input_names, input_names, input_dict, input_list) all_good = all_good and run_ort_and_compare(sess, ort_input, output_example, check_tolerance) status = "SUCCESS" if all_good else "FAIL" logging.info(f"ONNX generated at {output} verified with onnxruntime : " + status) return all_good def run_ts_and_compare(ts_model, ts_input_list, ts_input_dict, output_example, check_tolerance=0.01): # Verify the model can be read, and is valid ts_out = ts_model(*ts_input_list, **ts_input_dict) all_good = True for i, out in enumerate(ts_out): expected = output_example[i] if torch.is_tensor(expected): tout = out.to('cpu') logging.debug(f"Checking output {i}, shape: {expected.shape}:\n") this_good = True try: if not torch.allclose(tout, expected.cpu(), rtol=check_tolerance, atol=check_tolerance): this_good = False except Exception: # there may ne size mismatch and it may be OK this_good = False if not this_good: logging.info(f"Results mismatch! PyTorch(expected):\n{expected}\nTorchScript:\n{tout}") all_good = False return all_good def run_ort_and_compare(sess, ort_input, output_example, check_tolerance=0.01): # Verify the model can be read, and is valid ort_out = sess.run(None, ort_input) all_good = True for i, out in enumerate(ort_out): expected = output_example[i] if torch.is_tensor(expected): tout = torch.from_numpy(out) logging.debug(f"Checking output {i}, shape: {expected.shape}:\n") this_good = True try: if not torch.allclose(tout, expected.cpu(), rtol=check_tolerance, atol=100 * check_tolerance): this_good = False except Exception: # there may ne size mismatch and it may be OK this_good = False if not this_good: logging.info(f"onnxruntime results mismatch! PyTorch(expected):\n{expected}\nONNXruntime:\n{tout}") all_good = False return all_good apex_available = True try: from apex.contrib.layer_norm.layer_norm import FastLayerNorm from apex.normalization import MixedFusedRMSNorm from apex.normalization.fused_layer_norm import FusedLayerNorm, MixedFusedLayerNorm from apex.transformer.functional.fused_softmax import FusedScaleMaskSoftmax from apex.transformer.tensor_parallel.layers import ColumnParallelLinear, RowParallelLinear def replace_FusedLayerNorm(n: nn.Module) -> Optional[nn.LayerNorm]: """ Replaces Apex's FusedLayerNorm with nn.LayerNorm. This is required for ONNX export. Args: n: the FusedLayerNorm pytorch module to replace Returns: Equivalent LayerNorm module """ p = next(n.parameters()) if isinstance(n, FusedLayerNorm) or isinstance(n, MixedFusedLayerNorm): shape, eps, affine = n.normalized_shape, n.eps, n.elementwise_affine elif isinstance(n, FastLayerNorm): shape, eps, affine = n.weight.shape, n.epsilon, True else: return None n_state = n.state_dict() mod = nn.LayerNorm(shape, eps=eps, elementwise_affine=affine, device=p.device, dtype=p.dtype) mod.load_state_dict(n_state) return mod def replace_MixedFusedRMSNorm(n: nn.Module): """ Replaces Apex's MixedFusedRMSNorm with equivalent Pytorch layer. This is required for ONNX export. Args: n: the MixedFusedRMSNorm pytorch module to replace Returns: Equivalent module """ p = next(n.parameters()) if isinstance(n, MixedFusedRMSNorm): mod = TorchRMSNorm(n.state_dict()['weight'], n.eps).to(p.device) else: return None return mod def replace_ParallelLinear(n: nn.Module) -> Optional[nn.Linear]: """ Replaces Apex's ColumnParallelLinear or RowParallelLinear with nn.Linear Args: n: the nn.Module pytorch module to replace Returns: Equivalent Linear module """ if not (isinstance(n, ColumnParallelLinear) or isinstance(n, RowParallelLinear)): raise ValueError("This function can only change the ColumnParallelLinear or RowParallelLinear module.") dev = next(n.parameters()).device mod = LinearWithBiasSkip(n.weight, n.bias, n.skip_bias_add).to(dev) n_state = n.state_dict() mod.load_state_dict(n_state) return mod def replace_FusedScaleMaskSoftmax(n: nn.Module) -> Optional[nn.Linear]: """ Replaces Apex's FusedScaleMaskSoftmax with nn.LayerNorm. This is required for ONNX export. Args: n: the FusedScaleMaskSoftmax module to replace Returns: Equivalent LayerNorm module """ if not isinstance(n, FusedScaleMaskSoftmax): raise ValueError("This function can only change the FusedScaleMaskSoftmax module.") # disable the fusion only mod = FusedScaleMaskSoftmax( n.input_in_fp16, n.input_in_bf16, n.attn_mask_type, False, n.mask_func, n.softmax_in_fp32, n.scale ) return mod default_Apex_replacements = { "FusedLayerNorm": replace_FusedLayerNorm, "MixedFusedLayerNorm": replace_FusedLayerNorm, "FastLayerNorm": replace_FusedLayerNorm, "RowParallelLinear": replace_ParallelLinear, "ColumnParallelLinear": replace_ParallelLinear, "FusedScaleMaskSoftmax": replace_FusedScaleMaskSoftmax, "MixedFusedRMSNorm": replace_MixedFusedRMSNorm, } except Exception as e: default_Apex_replacements = {} apex_available = False def simple_replace(BaseT: Type[nn.Module], DestT: Type[nn.Module]) -> Callable[[nn.Module], Optional[nn.Module]]: """ Generic function generator to replace BaseT module with DestT. BaseT and DestT should have same atrributes. No weights are copied. Args: BaseT : module type to replace DestT : destination module type Returns: swap function to replace BaseT module with DestT """ def expansion_fn(mod: nn.Module) -> Optional[nn.Module]: if not isinstance(mod, BaseT): return None args = [getattr(mod, name, None) for name in mod.__constants__] out = DestT(*args) return out return expansion_fn def replace_MatchedScaleMaskSoftmax(n: nn.Module) -> Optional[nn.Linear]: """ Replaces MatchedScaleMaskSoftmax with exportable softmax layer Args: n: module to replace Returns: exportable module """ # including the import here to avoid circular imports from nemo.collections.nlp.modules.common.megatron.fused_softmax import MatchedScaleMaskSoftmax # disabling fusion for the MatchedScaleMaskSoftmax mod = MatchedScaleMaskSoftmax( n.input_in_fp16, n.input_in_bf16, n.attn_mask_type, False, n.mask_func, n.softmax_in_fp32, n.scale ) return mod def wrap_module(BaseT: Type[nn.Module], DestT: Type[nn.Module]) -> Callable[[nn.Module], Optional[nn.Module]]: """ Generic function generator to replace BaseT module with DestT wrapper. Args: BaseT : module type to replace DestT : destination module type Returns: swap function to replace BaseT module with DestT """ def expansion_fn(mod: nn.Module) -> Optional[nn.Module]: out = DestT(mod) return out return expansion_fn def swap_modules(model: nn.Module, mapping: Dict[str, nn.Module]): """ This function swaps nested modules as specified by "dot paths" in mod with a desired replacement. This allows for swapping nested modules through arbitrary levels if children NOTE: This occurs in place, if you want to preserve model then make sure to copy it first. """ for path, new_mod in mapping.items(): expanded_path = path.split(".") parent_mod = model for sub_path in expanded_path[:-1]: parent_mod = parent_mod._modules[sub_path] # noqa parent_mod._modules[expanded_path[-1]] = new_mod # noqa return model def replace_modules( model: nn.Module, expansions: Dict[str, Callable[[nn.Module], Optional[nn.Module]]] = None ) -> nn.Module: """ Top-level function to replace modules in model, specified by class name with a desired replacement. NOTE: This occurs in place, if you want to preserve model then make sure to copy it first. Args: model : top level module expansions : replacement dictionary: module class name -> replacement function generator Returns: model, possibly modified in-place """ mapping: Dict[str, nn.Module] = {} for name, m in model.named_modules(): m_type = type(m).__name__ if m_type in expansions: swapped = expansions[m_type](m) if swapped: mapping[name] = swapped if len(mapping) > 0: logging.info(f"Swapped {len(mapping)} modules") swap_modules(model, mapping) return model def script_module(m: nn.Module): return torch.jit.script(m) script_replacements = {} def replace_for_export(model: nn.Module) -> nn.Module: """ Top-level function to replace default set of modules in model NOTE: This occurs in place, if you want to preserve model then make sure to copy it first. Args: model : top level module replace_1D_2D : include 1D -> 2D replacements Returns: model, possibly modified in-place """ from nemo.collections.tts.modules.submodules import MaskedInstanceNorm1d default_replacements = { "BatchNorm1d": wrap_module(nn.BatchNorm1d, CastToFloat), "BatchNorm2d": wrap_module(nn.BatchNorm2d, CastToFloat), "LayerNorm": wrap_module(nn.LayerNorm, CastToFloat), "InstanceNorm1d": wrap_module(nn.InstanceNorm1d, CastToFloat), "MaskedInstanceNorm1d": wrap_module(MaskedInstanceNorm1d, CastToFloatAll), "MatchedScaleMaskSoftmax": wrap_module(None, replace_MatchedScaleMaskSoftmax), } replace_modules(model, default_Apex_replacements) replace_modules(model, default_replacements) # This one has to be the last replace_modules(model, script_replacements)