# Publications
Here, we list a collection of research articles that utilize the NeMo Toolkit. If you would like to include your paper in this collection, please submit a PR updating this document.
-------
# Automatic Speech Recognition (ASR)
2023
* [Fast Entropy-Based Methods of Word-Level Confidence Estimation for End-to-End Automatic Speech Recognition](https://ieeexplore.ieee.org/abstract/document/10022960)
* [Damage Control During Domain Adaptation for Transducer Based Automatic Speech Recognition](https://ieeexplore.ieee.org/abstract/document/10023219)
2022
* [Multi-blank Transducers for Speech Recognition](https://arxiv.org/abs/2211.03541)
2021
* [Citrinet: Closing the Gap between Non-Autoregressive and Autoregressive End-to-End Models for Automatic Speech Recognition](https://arxiv.org/abs/2104.01721)
* [SPGISpeech: 5,000 hours of transcribed financial audio for fully formatted end-to-end speech recognition](https://www.isca-speech.org/archive/interspeech_2021/oneill21_interspeech.html)
* [CarneliNet: Neural Mixture Model for Automatic Speech Recognition](https://arxiv.org/abs/2107.10708)
* [CTC Variations Through New WFST Topologies](https://arxiv.org/abs/2110.03098)
* [A Toolbox for Construction and Analysis of Speech Datasets](https://openreview.net/pdf?id=oJ0oHQtAld)
2020
* [Cross-Language Transfer Learning, Continuous Learning, and Domain Adaptation for End-to-End Automatic Speech Recognition](https://ieeexplore.ieee.org/document/9428334)
* [Correction of Automatic Speech Recognition with Transformer Sequence-To-Sequence Model](https://ieeexplore.ieee.org/abstract/document/9053051)
* [Improving Noise Robustness of an End-to-End Neural Model for Automatic Speech Recognition](https://arxiv.org/abs/2010.12715)
2019
* [Jasper: An End-to-End Convolutional Neural Acoustic Model](https://arxiv.org/abs/1904.03288)
* [QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions](https://arxiv.org/abs/1910.10261)
--------
## Speaker Recognition (SpkR)
2022
* [TitaNet: Neural Model for Speaker Representation with 1D Depth-Wise Separable Convolutions and Global Context](https://ieeexplore.ieee.org/abstract/document/9746806)
2020
* [SpeakerNet: 1D Depth-wise Separable Convolutional Network for Text-Independent Speaker Recognition and Verification]( https://arxiv.org/pdf/2010.12653.pdf)
--------
## Speech Classification
2022
* [AmberNet: A Compact End-to-End Model for Spoken Language Identification](https://arxiv.org/abs/2210.15781)
* [Accidental Learners: Spoken Language Identification in Multilingual Self-Supervised Models](https://arxiv.org/abs/2211.05103)
2021
* [MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection](https://ieeexplore.ieee.org/abstract/document/9414470/)
2020
* [MatchboxNet - 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition](http://www.interspeech2020.org/index.php?m=content&c=index&a=show&catid=337&id=993)
--------
## Speech Translation
2022
* [NVIDIA NeMo Offline Speech Translation Systems for IWSLT 2022](https://aclanthology.org/2022.iwslt-1.18/)
--------
# Natural Language Processing (NLP)
## Language Modeling
2022
* [Evaluating Parameter Efficient Learning for Generation](https://arxiv.org/abs/2210.13673)
* [Text Mining Drug/Chemical-Protein Interactions using an Ensemble of BERT and T5 Based Models](https://arxiv.org/abs/2111.15617)
2021
* [BioMegatron: Larger Biomedical Domain Language Model ](https://aclanthology.org/2020.emnlp-main.379/)
## Neural Machine Translation
2022
* [Finding the Right Recipe for Low Resource Domain Adaptation in Neural Machine Translation](https://arxiv.org/abs/2206.01137)
2021
* [NVIDIA NeMo Neural Machine Translatio Systems for English-German and English-Russian News and Biomedical Tasks at WMT21](https://arxiv.org/pdf/2111.08634.pdf)
--------
## Dialogue State Tracking
2021
* [SGD-QA: Fast Schema-Guided Dialogue State Tracking for Unseen Services](https://arxiv.org/abs/2105.08049)
2020
* [A Fast and Robust BERT-based Dialogue State Tracker for Schema-Guided Dialogue Dataset](https://arxiv.org/abs/2008.12335)
--------
# Text To Speech (TTS)
2022
* [Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers](https://arxiv.org/abs/2211.00585)
2021
* [TalkNet: Fully-Convolutional Non-Autoregressive Speech Synthesis Model](https://www.isca-speech.org/archive/interspeech_2021/beliaev21_interspeech.html)
* [TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction](https://arxiv.org/abs/2104.08189)
* [Hi-Fi Multi-Speaker English TTS Dataset](https://www.isca-speech.org/archive/pdfs/interspeech_2021/bakhturina21_interspeech.pdf)
* [Mixer-TTS: non-autoregressive, fast and compact text-to-speech model conditioned on language model embeddings](https://arxiv.org/abs/2110.03584)
--------
# (Inverse) Text Normalization
2022
* [Shallow Fusion of Weighted Finite-State Transducer and Language Model for Text Normalization](https://arxiv.org/abs/2203.15917)
* [Thutmose Tagger: Single-pass neural model for Inverse Text Normalization](https://arxiv.org/abs/2208.00064)
2021
* [NeMo Inverse Text Normalization: From Development to Production](https://www.isca-speech.org/archive/pdfs/interspeech_2021/zhang21ga_interspeech.pdf)
* [A Unified Transformer-based Framework for Duplex Text Normalization](https://arxiv.org/pdf/2108.09889.pdf )
--------