pipeline { agent { docker { image 'pytorch_23.02:apex_eec72500b073581edf1bc9183f0337338478ba9b_te_f06e2d85619376b9db0ca86847df2f1a5cb71388' args '--device=/dev/nvidia0 --gpus all --user 0:128 -v /home/TestData:/home/TestData -v $HOME/.cache:/root/.cache --shm-size=8g' } } options { timeout(time: 2, unit: 'HOURS') disableConcurrentBuilds(abortPrevious: true) } stages { stage('Add git safe directory'){ steps{ sh 'git config --global --add safe.directory /var/lib/jenkins/workspace/NeMo_$GIT_BRANCH' sh 'git config --global --add safe.directory /raid/JenkinsWorkDir/workspace/NeMo_$GIT_BRANCH' sh 'git config --global --add safe.directory /mnt/D3/JenkinsWorkDir/workspace/NeMo_$GIT_BRANCH' } } stage('nvidia-smi'){ steps{ sh 'nvidia-smi' } } stage('PyTorch version') { steps { sh 'python -c "import torch; print(torch.__version__)"' sh 'python -c "import torchvision; print(torchvision.__version__)"' } } stage('Install test requirements') { steps { sh 'apt-get update && apt-get install -y bc && pip install -r requirements/requirements_test.txt' } } stage('Code formatting checks') { steps { sh 'python setup.py style' } } stage('Copyright Headers check') { steps { sh 'python tests/check_copyright_header.py --dir .' } } stage('NeMo Installation') { steps { sh './reinstall.sh release' } } stage('PyTorch Lightning version') { steps { sh 'python -c "import pytorch_lightning; print(pytorch_lightning.__version__)"' } } stage('PyTorch Lightning DDP Checks') { steps { sh 'CUDA_VISIBLE_DEVICES="0,1" python "tests/core_ptl/check_for_ranks.py"' } } stage('Basic Import Checks') { steps { sh 'python -c "import nemo.collections.asr as nemo_asr"' sh 'python -c "import nemo.collections.nlp as nemo_nlp"' sh 'python -c "import nemo.collections.tts as nemo_tts"' } } stage('L0: Unit Tests GPU') { steps { sh 'NEMO_NUMBA_MINVER=0.53 pytest -m "not pleasefixme" --with_downloads' } } stage('L0: Unit Tests CPU') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } steps { sh 'CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat' } } stage('L2: ASR dev run') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Speech to Text') { steps { sh 'python examples/asr/asr_ctc/speech_to_text_ctc.py \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_to_text_results' sh 'rm -rf examples/asr/speech_to_text_results' } } stage('L2: Speech to Text WPE - CitriNet') { steps { sh 'python examples/asr/asr_ctc/speech_to_text_ctc_bpe.py \ --config-path="../conf/citrinet/" --config-name="config_bpe" \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \ model.tokenizer.type="wpe" \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_to_text_wpe_results' sh 'rm -rf examples/asr/speech_to_text_wpe_results' } } stage('L2: Speech Pre-training - CitriNet') { steps { sh 'python examples/asr/speech_pretraining/speech_pre_training.py \ --config-path="../conf/ssl/citrinet/" --config-name="citrinet_ssl_ci" \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_pre_training_results' sh 'rm -rf examples/asr/speech_pre_training_results' } } stage('L2: Speech Pre-training - Wav2Vec') { steps { sh 'python examples/asr/speech_pretraining/speech_pre_training.py \ --config-path="../conf/ssl/wav2vec/" --config-name="wav2vec_ci" \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_pre_training_results' sh 'rm -rf examples/asr/speech_pre_training_results' } } stage('L2: Speech to Text WPE - Conformer') { steps { sh 'python examples/asr/asr_ctc/speech_to_text_ctc_bpe.py \ --config-path="../conf/conformer" --config-name="conformer_ctc_bpe" \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \ model.tokenizer.type="wpe" \ model.train_ds.batch_size=4 \ model.validation_ds.batch_size=4 \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_to_text_wpe_conformer_results' sh 'rm -rf examples/asr/speech_to_text_wpe_conformer_results' } } } } stage('L2: ASR dev run - part two') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('L2: Speech to Text WPE - Squeezeformer') { steps { sh 'python examples/asr/asr_ctc/speech_to_text_ctc_bpe.py \ --config-path="../conf/squeezeformer" --config-name="squeezeformer_ctc_bpe" \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \ model.tokenizer.type="wpe" \ model.encoder.d_model=144 \ model.train_ds.batch_size=4 \ model.validation_ds.batch_size=4 \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_to_text_wpe_squeezeformer_results' sh 'rm -rf examples/asr/speech_to_text_wpe_squeezeformer_results' } } } } stage('L2: Speech to Text EMA') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } steps { sh 'python examples/asr/asr_ctc/speech_to_text_ctc.py \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ trainer.devices=2 \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ +exp_manager.ema.enable=True \ exp_manager.exp_dir=examples/asr/speech_to_text_results' sh 'rm -rf examples/asr/speech_to_text_results' } } stage('L2: Speaker dev run') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Speaker Recognition') { steps { sh 'python examples/speaker_tasks/recognition/speaker_reco.py \ model.train_ds.batch_size=10 \ model.validation_ds.batch_size=2 \ model.train_ds.manifest_filepath=/home/TestData/an4_speaker/train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_speaker/dev.json \ model.decoder.num_classes=2 \ trainer.max_epochs=10 \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/speaker_tasks/recognition/speaker_recognition_results' sh 'rm -rf examples/speaker_tasks/recognition/speaker_recognition_results' } } stage('Speaker Diarization') { steps { sh 'python examples/speaker_tasks/diarization/neural_diarizer/multiscale_diar_decoder.py \ model.diarizer.speaker_embeddings.model_path=titanet_large \ model.train_ds.batch_size=5 \ model.validation_ds.batch_size=5 \ model.train_ds.emb_dir=examples/speaker_tasks/diarization/speaker_diarization_results \ model.validation_ds.emb_dir=examples/speaker_tasks/diarization/speaker_diarization_results \ model.train_ds.manifest_filepath=/home/TestData/an4_diarizer/simulated_train/msdd_data.50step.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_diarizer/simulated_valid/msdd_data.50step.json \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/speaker_tasks/diarization/speaker_diarization_results' sh 'rm -rf examples/speaker_tasks/diarization/speaker_diarization_results' } } stage('Speech to Label') { steps { sh 'python examples/asr/speech_classification/speech_to_label.py \ model.train_ds.manifest_filepath=/home/TestData/speech_commands/train_manifest.json \ model.validation_ds.manifest_filepath=/home/TestData/speech_commands/test_manifest.json \ model.test_ds.manifest_filepath=/home/TestData/speech_commands/test_manifest.json \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ model.preprocessor._target_=nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor \ ~model.preprocessor.window_size \ ~model.preprocessor.window_stride \ ~model.preprocessor.window \ ~model.preprocessor.n_mels \ ~model.preprocessor.n_mfcc \ ~model.preprocessor.n_fft \ exp_manager.exp_dir=examples/asr/speech_to_label_results' sh 'rm -rf examples/asr/speech_to_label_results' } } stage('Speaker Diarization with ASR Inference') { steps { sh 'python examples/speaker_tasks/diarization/clustering_diarizer/offline_diar_with_asr_infer.py \ diarizer.manifest_filepath=/home/TestData/an4_diarizer/an4_manifest.json \ diarizer.speaker_embeddings.model_path=/home/TestData/an4_diarizer/spkr.nemo \ diarizer.speaker_embeddings.parameters.save_embeddings=True \ diarizer.speaker_embeddings.parameters.window_length_in_sec=[1.5] \ diarizer.speaker_embeddings.parameters.shift_length_in_sec=[0.75] \ diarizer.speaker_embeddings.parameters.multiscale_weights=[1.0] \ diarizer.asr.model_path=QuartzNet15x5Base-En \ diarizer.asr.parameters.asr_based_vad=True \ diarizer.out_dir=examples/speaker_tasks/diarization/speaker_diarization_asr_results' sh 'rm -rf examples/speaker_tasks/diarization/speaker_diarization_asr_results' } } stage('Clustering Diarizer Inference') { steps { sh 'python examples/speaker_tasks/diarization/clustering_diarizer/offline_diar_infer.py \ diarizer.manifest_filepath=/home/TestData/an4_diarizer/an4_manifest.json \ diarizer.speaker_embeddings.model_path=/home/TestData/an4_diarizer/spkr.nemo \ diarizer.speaker_embeddings.parameters.save_embeddings=True \ diarizer.speaker_embeddings.parameters.window_length_in_sec=1.5 \ diarizer.speaker_embeddings.parameters.shift_length_in_sec=0.75 \ diarizer.speaker_embeddings.parameters.multiscale_weights=null \ diarizer.vad.model_path=/home/TestData/an4_diarizer/MatchboxNet_VAD_3x2.nemo \ diarizer.out_dir=examples/speaker_tasks/diarization/clustering_diarizer_results' sh 'rm -rf examples/speaker_tasks/diarization/clustering_diarizer_results' } } stage('Neural Diarizer Inference') { steps { sh 'python examples/speaker_tasks/diarization/neural_diarizer/multiscale_diar_decoder_infer.py \ diarizer.manifest_filepath=/home/TestData/an4_diarizer/an4_manifest.json \ diarizer.msdd_model.model_path=/home/TestData/an4_diarizer/diar_msdd_telephonic.nemo \ diarizer.speaker_embeddings.parameters.save_embeddings=True \ diarizer.vad.model_path=/home/TestData/an4_diarizer/MatchboxNet_VAD_3x2.nemo \ diarizer.out_dir=examples/speaker_tasks/diarization/neural_diarizer_results' sh 'rm -rf examples/speaker_tasks/diarization/neural_diarizer_results' } } stage('Multispeaker ASR Data Simulation') { steps { sh 'python tools/speech_data_simulator/multispeaker_simulator.py \ --config-path=conf --config-name=data_simulator.yaml \ data_simulator.random_seed=42 \ data_simulator.manifest_filepath=/home/TestData/LibriSpeechShort/dev-clean-align-short.json \ data_simulator.outputs.output_dir=./test_simulator \ data_simulator.session_config.num_sessions=2 \ data_simulator.session_config.session_length=60' sh 'rm -rf ./test_simulator' } } } } // TODO: Enable test after 21.08 container is used. // stage('L2: ASR DALI dev run') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('Speech to Text - DALI AudioToMelSpectrogramPreprocessor') { // steps { // sh 'python examples/asr/asr_ctc/speech_to_text_ctc.py \ // model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ // +model.train_ds.use_dali=True \ // model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ // +model.validation_ds.use_dali=True \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=True \ // exp_manager.exp_dir=examples/asr/speech_to_text_results' // sh 'rm -rf examples/asr/speech_to_text_results' // } // } // stage('Speech to Text BPE - DALI AudioToMelSpectrogramPreprocessor') { // steps { // sh 'python examples/asr/asr_ctc/speech_to_text_bpe.py \ // --config-path="../conf/citrinet/" --config-name="config_bpe" \ // model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \ // model.tokenizer.type="wpe" \ // model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ // +model.train_ds.use_dali=True \ // model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ // +model.validation_ds.use_dali=True \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=True \ // exp_manager.exp_dir=examples/asr/speech_to_text_wpe_results' // sh 'rm -rf examples/asr/speech_to_text_wpe_results' // } // } // // TODO: This would fail due to an unnecessary torchaudio import. // // To be enabled once torchaudio is available in the container used for CI // // stage('Speech to Text - DALI AudioToMFCCPreprocessor') { // // steps { // // sh 'python examples/asr/asr_ctc/speech_to_text_ctc.py \ // // model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ // // +model.train_ds.use_dali=True \ // // model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ // // +model.validation_ds.use_dali=True \ // // model.preprocessor._target_=nemo.collections.asr.modules.AudioToMFCCPreprocessor \ // // ~model.preprocessor.normalize \ // // ~model.preprocessor.features \ // // ~model.preprocessor.frame_splicing \ // // ~model.preprocessor.dither \ // // ~model.preprocessor.stft_conv \ // // +model.n_mels=64 \ // // +model.n_mfcc=64 \ // // trainer.devices=[1] \ // // trainer.accelerator="gpu" \ // // +trainer.fast_dev_run=True \ // // exp_manager.exp_dir=examples/asr/speech_to_text_results' // // sh 'rm -rf examples/asr/speech_to_text_results' // // } // // } // } // } // TODO: Add back once CI is updated // stage('L2: ASR RNNT dev run') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('Speech to Text - RNNT') { // steps { // sh 'STRICT_NUMBA_COMPAT_CHECK=false python examples/asr/asr_transducer/speech_to_text_rnnt.py \ // --config-path="../conf/contextnet_rnnt/" --config-name="config_rnnt.yaml" \ // model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ // model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ // model.train_ds.batch_size=2 \ // model.validation_ds.batch_size=2 \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=True \ // exp_manager.exp_dir=examples/asr/speech_to_text_rnnt_results' // sh 'rm -rf examples/asr/speech_to_text_rnnt_results' // } // } // stage('L2: Speech to Text RNNT WPE') { // steps { // sh 'STRICT_NUMBA_COMPAT_CHECK=false python examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py \ // --config-path="../conf/contextnet_rnnt/" --config-name="config_rnnt_bpe.yaml" \ // model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ // model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ // model.train_ds.batch_size=2 \ // model.validation_ds.batch_size=2 \ // model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \ // model.tokenizer.type="wpe" \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=True \ // exp_manager.exp_dir=examples/asr/speech_to_text_rnnt_wpe_results' // sh 'rm -rf examples/asr/speech_to_text_rnnt_wpe_results' // } // } // stage('L3: Speech to Text Hybrid Transducer-CTC WPE') { // steps { // sh 'STRICT_NUMBA_COMPAT_CHECK=false python examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py \ // --config-path="../conf/conformer/hybrid_transducer_ctc/conformer_hybrid_transducer_ctc/" --config-name="conformer_hybrid_transducer_ctc_bpe.yaml" \ // model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ // model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ // model.encoder.n_layers= 2 \ // model.train_ds.batch_size=2 \ // model.validation_ds.batch_size=2 \ // model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \ // model.tokenizer.type="wpe" \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=True \ // exp_manager.exp_dir=examples/asr/speech_to_text_hybrid_transducer_ctc_wpe_results' // sh 'rm -rf examples/asr/speech_to_text_hybrid_transducer_ctc_wpe_results' // } // } // } // } // stage('L2: Hybrid ASR RNNT-CTC dev run') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('Speech to Text Hybrid Transducer-CTC WPE') { // steps { // sh 'STRICT_NUMBA_COMPAT_CHECK=false python examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py \ // --config-path="../conf/conformer/hybrid_transducer_ctc/conformer_hybrid_transducer_ctc/" --config-name="conformer_hybrid_transducer_ctc_bpe.yaml" \ // model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ // model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ // model.encoder.n_layers= 2 \ // model.train_ds.batch_size=2 \ // model.validation_ds.batch_size=2 \ // model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \ // model.tokenizer.type="wpe" \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=True \ // exp_manager.exp_dir=examples/asr/speech_to_text_hybrid_transducer_ctc_wpe_results' // sh 'rm -rf examples/asr/speech_to_text_hybrid_transducer_ctc_wpe_results' // } // } // } // } stage('L2: ASR Multi-dataloader dev run') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Speech to Text multi-dataloader') { steps { sh 'python examples/asr/asr_ctc/speech_to_text_ctc.py \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=[/home/TestData/an4_dataset/an4_val.json,/home/TestData/an4_dataset/an4_val.json] \ trainer.devices=[0] \ trainer.accelerator="gpu" \ trainer.max_epochs=1 \ trainer.max_steps=1 \ +trainer.num_sanity_val_steps=1 \ exp_manager.exp_dir=examples/asr/speech_to_text_results' sh 'rm -rf examples/asr/speech_to_text_results' } } stage('Speech to Label multi-dataloader') { steps { sh 'python examples/asr/speech_classification/speech_to_label.py \ model.train_ds.manifest_filepath=/home/TestData/speech_commands/train_manifest.json \ model.validation_ds.manifest_filepath=[/home/TestData/speech_commands/test_manifest.json,/home/TestData/speech_commands/test_manifest.json] \ trainer.devices=[1] \ trainer.accelerator="gpu" \ trainer.max_epochs=1 \ trainer.max_steps=1 \ +trainer.num_sanity_val_steps=1 \ model.preprocessor._target_=nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor \ ~model.preprocessor.window_size \ ~model.preprocessor.window_stride \ ~model.preprocessor.window \ ~model.preprocessor.n_mels \ ~model.preprocessor.n_mfcc \ ~model.preprocessor.n_fft \ exp_manager.exp_dir=examples/asr/speech_to_label_results' sh 'rm -rf examples/asr/speech_to_label_results' } } } } stage('L2: ASR Adapters') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Linear Adapters') { steps { sh 'python examples/asr/asr_adapters/train_asr_adapter.py \ model.pretrained_model="stt_en_conformer_ctc_small" \ model.adapter.adapter_name="an4" \ model.adapter.linear.in_features=176 \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ trainer.max_steps=5 \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_to_text_adapters_results' sh 'rm -rf examples/asr/speech_to_text_adapters_results' } } stage('RelPos MHA Adapters') { steps { sh 'python examples/asr/asr_adapters/train_asr_adapter.py \ model.pretrained_model="stt_en_conformer_ctc_small" \ model.adapter.adapter_name="encoder:an4" \ model.adapter.adapter_type="tiny_attn" \ model.adapter.tiny_attn.n_feat=176 \ model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \ model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \ trainer.max_steps=5 \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ exp_manager.exp_dir=examples/asr/speech_to_text_adapters_mha_results' sh 'rm -rf examples/asr/speech_to_text_adapters_mha_results' } } } } stage('L2: Megatron T5 Adapter PP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('T5 Adapter tuning & inference TP=1 PP=2') { steps { sh "python examples/nlp/language_modeling/tuning/megatron_t5_adapter_tuning.py \ --config-name=megatron_t5_adapter_tuning_config \ name='test_tp1_pp2' \ exp_manager.exp_dir='examples/adapter_tuning' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=1 \ model.pipeline_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp1_pp2.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "python examples/nlp/language_modeling/tuning/megatron_t5_adapter_eval.py \ --config-name=megatron_t5_adapter_inference \ adapter_model_file='examples/adapter_tuning/test_tp1_pp2.nemo' \ language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp1_pp2.nemo' \ trainer.devices=2 \ data.num_workers=1 \ tensor_model_parallel_size=1 \ pipeline_model_parallel_size=2 \ data.global_batch_size=2 \ data.micro_batch_size=2 \ data.test_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ pred_file_path='examples/adapter_tuning/test_tp1_pp2/preds.txt'" sh "rm -rf examples/adapter_tuning/test_tp1_pp2.nemo" sh "rm -rf examples/adapter_tuning/test_tp1_pp2" } } } } stage('L2: Megatron T5 Adapter TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('T5 Adapter tuning & inference TP=2 PP=1') { steps { sh "python examples/nlp/language_modeling/tuning/megatron_t5_adapter_tuning.py \ --config-name=megatron_t5_adapter_tuning_config \ name='test_tp2_pp1' \ exp_manager.exp_dir='examples/adapter_tuning' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "python examples/nlp/language_modeling/tuning/megatron_t5_adapter_eval.py \ --config-name=megatron_t5_adapter_inference \ adapter_model_file='examples/adapter_tuning/test_tp2_pp1.nemo' \ language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo' \ trainer.devices=2 \ tensor_model_parallel_size=2 \ data.global_batch_size=2 \ data.micro_batch_size=2 \ data.num_workers=1 \ data.test_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ pred_file_path='examples/adapter_tuning/test_tp2_pp1/preds.txt'" sh "rm -rf examples/adapter_tuning/test_tp2_pp1.nemo" sh "rm -rf examples/adapter_tuning/test_tp2_pp1" } } } } stage('L2: Megatron T5 IA3 PP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('T5 IA3 tuning & inference TP=1 PP=2') { steps { sh "python examples/nlp/language_modeling/tuning/megatron_t5_ia3_tuning.py \ --config-name=megatron_t5_ia3_tuning_config \ name='test_tp1_pp2' \ exp_manager.exp_dir='examples/ia3_tuning' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=1 \ model.pipeline_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp1_pp2.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "python examples/nlp/language_modeling/tuning/megatron_t5_ia3_eval.py \ --config-name=megatron_t5_ia3_inference \ adapter_model_file='examples/ia3_tuning/test_tp1_pp2.nemo' \ language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp1_pp2.nemo' \ trainer.devices=2 \ data.num_workers=1 \ tensor_model_parallel_size=1 \ pipeline_model_parallel_size=2 \ data.global_batch_size=2 \ data.micro_batch_size=2 \ data.test_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ pred_file_path='examples/ia3_tuning/test_tp1_pp2/preds.txt'" sh "rm -rf examples/ia3_tuning/test_tp1_pp2.nemo" sh "rm -rf examples/ia3_tuning/test_tp1_pp2" } } } } stage('L2: Megatron T5 IA3 TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('T5 IA3 tuning & inference TP=2 PP=1') { steps { sh "python examples/nlp/language_modeling/tuning/megatron_t5_ia3_tuning.py \ --config-name=megatron_t5_ia3_tuning_config \ name='test_tp2_pp1' \ exp_manager.exp_dir='examples/ia3_tuning' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "python examples/nlp/language_modeling/tuning/megatron_t5_ia3_eval.py \ --config-name=megatron_t5_ia3_inference \ adapter_model_file='examples/ia3_tuning/test_tp2_pp1.nemo' \ language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo' \ trainer.devices=2 \ data.num_workers=1 \ tensor_model_parallel_size=2 \ data.global_batch_size=2 \ data.micro_batch_size=2 \ data.test_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ pred_file_path='examples/ia3_tuning/test_tp2_pp1/preds.txt'" sh "rm -rf examples/ia3_tuning/test_tp2_pp1.nemo" sh "rm -rf examples/ia3_tuning/test_tp2_pp1" } } } } stage('L2: Megatron GPT Adapter TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('GPT Adapter tuning & inference TP=2 PP=1') { steps { sh "python examples/nlp/language_modeling/tuning/megatron_gpt_adapter_tuning.py \ --config-name=megatron_gpt_adapter_tuning_config \ name='test_tp2_pp1' \ exp_manager.exp_dir='examples/adapter_tuning' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp2_pp1.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "python examples/nlp/language_modeling/tuning/megatron_gpt_adapter_eval.py \ --config-name=megatron_gpt_adapter_inference \ adapter_model_file='examples/adapter_tuning/test_tp2_pp1.nemo' \ gpt_model_file='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp2_pp1.nemo' \ inference.greedy=True \ num_workers=1 \ inference.add_BOS=False \ trainer.devices=2 \ tensor_model_parallel_size=2 \ data_paths=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl']" sh "rm -rf examples/adapter_tuning/test_tp2_pp1.nemo" sh "rm -rf examples/adapter_tuning/test_tp2_pp1" } } } } stage('L2: Megatron GPT Adapter PP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('GPT Adapter tuning & inference TP=1 PP=2') { steps { sh "python examples/nlp/language_modeling/tuning/megatron_gpt_adapter_tuning.py \ --config-name=megatron_gpt_adapter_tuning_config \ name='test_tp1_pp2' \ exp_manager.exp_dir='examples/adapter_tuning' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=1 \ model.pipeline_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp1_pp2.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "python examples/nlp/language_modeling/tuning/megatron_gpt_adapter_eval.py \ --config-name=megatron_gpt_adapter_inference \ adapter_model_file='examples/adapter_tuning/test_tp1_pp2.nemo' \ gpt_model_file='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp1_pp2.nemo' \ inference.greedy=True \ inference.add_BOS=False \ trainer.devices=2 \ num_workers=1 \ tensor_model_parallel_size=2 \ data_paths=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl']" sh "rm -rf examples/adapter_tuning/test_tp1_pp2.nemo" sh "rm -rf examples/adapter_tuning/test_tp1_pp2" } } } } stage('L2: Speech Transcription') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Speech to Text Transcribe') { steps { sh 'python examples/asr/transcribe_speech.py \ pretrained_name="QuartzNet15x5Base-En" \ audio_dir="/home/TestData/an4_transcribe/test_subset/" \ output_filename="stt_test_res.json" \ amp=true' sh 'rm -rf stt_test_res.json' } } } } stage('L2: Transducer alignment') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Running pytest') { steps { sh 'pytest tests/collections/asr/decoding/rnnt_alignments_check.py --durations=-1' } } } } stage('L2: Segmentation Tool') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } stages { stage('Install ctc_segmentation requirements') { steps { sh 'cd tools/ctc_segmentation && \ pip install -r requirements.txt && \ apt-get update && apt-get install libsox-fmt-all -y' } } stage('Parallel ctc_segmentation test') { failFast true parallel { stage('L2: Eng CitriNet with .wav') { steps { sh 'cd tools/ctc_segmentation && \ TIME=`date +"%Y-%m-%d-%T"` && \ /bin/bash run_segmentation.sh \ --MODEL_NAME_OR_PATH="stt_en_citrinet_512_gamma_0_25" \ --DATA_DIR=/home/TestData/ctc_segmentation/eng \ --OUTPUT_DIR=/home/TestData/ctc_segmentation/eng/output${TIME} \ --LANGUAGE=en \ --USE_NEMO_NORMALIZATION="TRUE" && \ python /home/TestData/ctc_segmentation/verify_alignment.py \ -r /home/TestData/ctc_segmentation/eng/eng_valid_segments_1.7.txt \ -g /home/TestData/ctc_segmentation/eng/output${TIME}/verified_segments/nv_test_segments.txt && \ rm -rf /home/TestData/ctc_segmentation/eng/output${TIME}' } } stage('L2: Ru QN with mp3') { steps { sh 'cd tools/ctc_segmentation && \ TIME=`date +"%Y-%m-%d-%T"` && \ /bin/bash run_segmentation.sh \ --MODEL_NAME_OR_PATH=/home/TestData/ctc_segmentation/QuartzNet15x5-Ru-e512-wer14.45.nemo \ --DATA_DIR=/home/TestData/ctc_segmentation/ru \ --OUTPUT_DIR=/home/TestData/ctc_segmentation/ru/output${TIME} \ --LANGUAGE=ru \ --ADDITIONAL_SPLIT_SYMBOLS=";" && \ python /home/TestData/ctc_segmentation/verify_alignment.py \ -r /home/TestData/ctc_segmentation/ru/valid_ru_segments_1.7.txt \ -g /home/TestData/ctc_segmentation/ru/output${TIME}/verified_segments/ru_segments.txt && \ rm -rf /home/TestData/ctc_segmentation/ru/output${TIME}' } } } } } } stage('L2: G2P Models') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('G2P Conformer training, evaluation and inference') { steps { sh 'cd examples/tts/g2p && \ TIME=`date +"%Y-%m-%d-%T"` && OUTPUT_DIR_CONFORMER=output_ctc_${TIME} && \ python g2p_train_and_evaluate.py \ train_manifest=/home/TestData/g2p/g2p.json \ validation_manifest=/home/TestData/g2p/g2p.json \ model.test_ds.manifest_filepath=/home/TestData/g2p/g2p.json \ model.tokenizer.dir=/home/TestData/g2p/tokenizer_spe_unigram_v512 \ trainer.max_epochs=1 \ model.max_source_len=64 \ trainer.devices=[0] \ do_training=True \ do_testing=True \ exp_manager.exp_dir=${OUTPUT_DIR_CONFORMER} \ +exp_manager.use_datetime_version=False\ +exp_manager.version=test \ --config-name=g2p_conformer_ctc && \ python g2p_inference.py \ pretrained_model=${OUTPUT_DIR_CONFORMER}/G2P-Conformer-CTC/test/checkpoints/G2P-Conformer-CTC.nemo \ manifest_filepath=/home/TestData/g2p/g2p.json \ phoneme_field=text' } } stage('ByT5G2P training, evaluation and inference') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/tts/g2p && \ TIME=`date +"%Y-%m-%d-%T"` && OUTPUT_DIR_T5=output_byt5_${TIME} && \ python g2p_train_and_evaluate.py \ train_manifest=/home/TestData/g2p/g2p.json \ validation_manifest=/home/TestData/g2p/g2p.json \ model.test_ds.manifest_filepath=/home/TestData/g2p/g2p.json \ trainer.max_epochs=1 \ model.max_source_len=64 \ trainer.devices=[1] \ do_training=True \ do_testing=True \ exp_manager.exp_dir=${OUTPUT_DIR_T5} \ +exp_manager.use_datetime_version=False\ +exp_manager.version=test && \ python g2p_inference.py \ pretrained_model=${OUTPUT_DIR_T5}/T5G2P/test/checkpoints/T5G2P.nemo \ manifest_filepath=/home/TestData/g2p/g2p.json \ phoneme_field=text && TRANSFORMERS_OFFLINE=1' } } stage('HeteronymClassificationModel training, evaluation and inference') { steps { sh 'cd examples/tts/g2p && \ TIME=`date +"%Y-%m-%d-%T"` && OUTPUT_DIR=output_${TIME} && \ python g2p_heteronym_classification_train_and_evaluate.py \ train_manifest=/home/TestData/g2p/manifest.json \ validation_manifest=/home/TestData/g2p/manifest.json \ test_manifest=/home/TestData/g2p/manifest.json \ model.wordids=/home/TestData/g2p/wordids.tsv \ trainer.max_epochs=1 \ model.max_seq_length=64 \ do_training=True \ do_testing=True \ exp_manager.exp_dir=${OUTPUT_DIR} \ +exp_manager.use_datetime_version=False\ +exp_manager.version=test && \ python g2p_heteronym_classification_inference.py \ manifest=/home/TestData/g2p/manifest.json \ pretrained_model=${OUTPUT_DIR}/HeteronymClassification/test/checkpoints/HeteronymClassification.nemo \ output_manifest=preds.json' } } } } // TODO: add test once megatron-bert is supported again // stage('L2: Multi-GPU Megatron finetuning') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('L2: Cased Megatron finetuning on MRPC') { // steps { // sh 'cd examples/nlp/glue_benchmark && \ // python glue_benchmark.py \ // model.dataset.data_dir=/home/TestData/nlp/glue_fake/MRPC \ // trainer.devices=[0,1] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // model.dataset.use_cache=false \ // model.language_model.pretrained_model_name=megatron-bert-345m-cased \ // trainer.accelerator=gpu \ // trainer.strategy=ddp \ // exp_manager=null' // } // } // } // } stage('L2: STS-b') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('GLUE STS-b with AlBERT') { steps { sh 'python examples/nlp/glue_benchmark/glue_benchmark.py \ model.dataset.use_cache=false \ model.task_name=sts-b \ model.dataset.data_dir=/home/TestData/nlp/glue_fake/STS-B \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=True \ model.language_model.pretrained_model_name=albert-base-v1 \ exp_manager=null' } } stage('Test Restore Punctuation & Capitalization with AlBERT') { steps { sh 'data_dir="$(mktemp -d -p "$(pwd)")" && \ cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}"/ && \ python examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py \ +do_training=false \ +do_testing=true \ pretrained_model=/home/TestData/nlp/pretrained_models/Punctuation_and_Capitalization_albert.nemo \ +model.test_ds.use_cache=false \ ~model.train_ds \ ~model.validation_ds \ model.test_ds.ds_item="${data_dir}" \ trainer.devices=[1] \ trainer.accelerator="gpu" \ exp_manager=null && \ rm -rf "${data_dir}"' } } // stage('Test Restore Punctuation & Capitalization with RoBERTa') { // steps { // sh 'data_dir="$(mktemp -d -p "$(pwd)")" && \ // cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}"/ && \ // python examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py \ // +do_training=false \ // +do_testing=true \ // pretrained_model=/home/TestData/nlp/pretrained_models/Punctuation_and_Capitalization_roberta.nemo \ // +model.test_ds.use_cache=false \ // ~model.train_ds \ // ~model.validation_ds \ // model.test_ds.ds_item="${data_dir}" \ // trainer.devices=[1] \ // trainer.accelerator="gpu" \ // exp_manager=null && \ // rm -rf "${data_dir}"' // } // } } } stage('L2: Dialogue Classification') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Dialogue: Intent and slot classification using GPT') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ model.dataset.data_dir=/home/TestData/nlp/sgd_small \ model.language_model.lm_checkpoint=/home/TestData/nlp/gpt2/pytorch_model.bin\ model.tokenizer.vocab_file=/home/TestData/nlp/gpt2/vocab.json\ model.dataset.dialogues_example_dir=sgd_gen_outputs \ model.dataset.task_name=debug_sample \ trainer.max_steps=1 \ trainer.max_epochs=1 \ model.train_ds.batch_size=2 \ model.validation_ds.batch_size=2 \ model.test_ds.batch_size=2 \ model.nemo_path=null \ trainer.val_check_interval=0.0 \ trainer.devices=[0] \ model.dataset.use_cache=false \ model.tokenizer.special_tokens={pad_token:"endoftext"} \ model.tokenizer.tokenizer_name=gpt2 \ model.tokenizer.vocab_file=/home/TestData/nlp/gpt2/vocab.json\ model.language_model.pretrained_model_name=/home/TestData/nlp/gpt2 \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf sgd_gen_outputs' } } stage('Intent and slot classification using SGDQA') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ model.dataset.data_dir=/home/TestData/nlp/sgd_small \ model.dataset.dialogues_example_dir=sgd_gen_bert_outputs \ model.dataset.task_name=debug_sample \ trainer.max_steps=1 \ trainer.max_epochs=1 \ model.train_ds.batch_size=2 \ model.validation_ds.batch_size=2 \ model.test_ds.batch_size=2 \ model.dataset.num_tasks=6 \ model.nemo_path=null \ trainer.val_check_interval=0.0 \ trainer.devices=[0] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=bert-base-cased \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf sgd_gen_bert_outputs' } } stage('Intent and slot classification using IntentSlotClassificationModel') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ model.dataset.data_dir=/home/TestData/nlp/processed_assistant \ model.dataset.dialogues_example_dir=sgd_gen_bert_intent_classification_outputs \ model.dataset.task=assistant \ trainer.max_steps=1 \ trainer.max_epochs=1 \ model.train_ds.batch_size=2 \ model.validation_ds.batch_size=2 \ model.test_ds.batch_size=2 \ model.nemo_path=null \ trainer.val_check_interval=0.0 \ trainer.devices=[0] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=bert-base-uncased \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf sgd_gen_bert_intent_classification_outputs && TRANSFORMERS_OFFLINE=1' } } stage('Intent classification using ZeroShotIntentModel') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ do_training=False \ model.dataset.data_dir=/home/TestData/nlp/drive_thru_revised \ model.original_nemo_checkpoint=/home/TestData/nlp/drive_thru_revised/zeroshotintent_en_bert_base_uncased.nemo \ model.dataset.dialogues_example_dir=sgd_gen_zero_shot_intent_classification_outputs \ model.dataset.task=zero_shot \ model.dataset.prompt_template="This example is" \ trainer.max_steps=1 \ trainer.max_epochs=1 \ model.train_ds.batch_size=2 \ model.validation_ds.batch_size=2 \ model.test_ds.batch_size=2 \ model.nemo_path=null \ trainer.val_check_interval=0.0 \ trainer.devices=[1] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=bert-base-uncased \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf sgd_gen_zero_shot_intent_classification_outputs && TRANSFORMERS_OFFLINE=1' } } stage('Design Intent classification using ZeroShotIntentModel') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ do_training=False \ model.dataset.data_dir=/home/TestData/nlp/design_dataset \ model.original_nemo_checkpoint=/home/TestData/nlp/drive_thru_revised/zeroshotintent_en_bert_base_uncased.nemo \ model.dataset.dialogues_example_dir=design_zero_shot_intent_classification_outputs \ model.dataset.task=design \ model.dataset.prompt_template="This example is related to" \ model.library=megatron \ trainer.max_steps=1 \ trainer.max_epochs=1 \ model.train_ds.batch_size=2 \ model.validation_ds.batch_size=2 \ model.test_ds.batch_size=2 \ model.nemo_path=null \ trainer.val_check_interval=0.0 \ trainer.devices=[1] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=bert-base-uncased \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf design_zero_shot_intent_classification_outputs && TRANSFORMERS_OFFLINE=1' } } stage('Design Intent classification using ZeroShotIntentModel BART Classifier') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ do_training=False \ model.dataset.data_dir=/home/TestData/nlp/design_dataset \ model.original_nemo_checkpoint=/home/TestData/nlp/drive_thru_revised/zeroshotintent_en_bert_base_uncased.nemo \ model.dataset.dialogues_example_dir=design_zero_shot_intent_classification_bart_outputs \ model.dataset.task=design \ model.dataset.prompt_template="This example is related to" \ model.library=huggingface \ trainer.devices=[1] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=bert-base-uncased \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf design_zero_shot_intent_classification_bart_outputs && TRANSFORMERS_OFFLINE=1' } } stage('Design Intent classification using DialogueNearestNeighbourModel') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ do_training=False \ model.dataset.data_dir=/home/TestData/nlp/design_dataset \ model.dataset.dialogues_example_dir=design_dialogue_nearest_neighbour_classification_outputs \ model.dataset.task=design \ model.dataset.prompt_template="" \ model.library=huggingface \ trainer.devices=[0] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=sentence-transformers/all-MiniLM-L6-v2 \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf design_dialogue_nearest_neighbour_classification_outputs && TRANSFORMERS_OFFLINE=1' } } } } stage('L2: Dialogue Generation') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Dialogue: Answer Extender using DialogueS2SGenerationModel') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ do_training=False \ model.dataset.data_dir=/home/TestData/nlp/ms-marco-qa \ model.dataset.dialogues_example_dir=answer_extender_s2s \ model.dataset.task=ms_marco \ model.library=huggingface \ model.dataset.debug_mode=True \ trainer.max_steps=1 \ trainer.max_epochs=1 \ model.train_ds.batch_size=2 \ model.validation_ds.batch_size=2 \ model.test_ds.batch_size=2 \ model.nemo_path=null \ trainer.val_check_interval=0.0 \ trainer.devices=[1] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=facebook/bart-large \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf answer_extender_s2s' } } stage('Dialogue: SGD Based Answer Extender using DialogueS2SGenerationModel') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ do_training=False \ model.dataset.data_dir=/home/TestData/nlp/sgd_small \ model.dataset.dialogues_example_dir=sgd_answer_extender_s2s \ model.dataset.task_name=debug_sample \ model.dataset.task=sgd_generation \ model.dataset.input_field=utterance+system_actions \ model.dataset.output_field=system_utterance \ model.dataset.use_cache=false \ model.dataset.system_utterance=next_turn \ model.dataset.debug_mode=True \ model.dataset.prompt_template=slots_values \ model.library=huggingface \ trainer.max_steps=1 \ trainer.max_epochs=1 \ model.train_ds.batch_size=2 \ model.validation_ds.batch_size=2 \ model.test_ds.batch_size=2 \ model.nemo_path=null \ trainer.val_check_interval=0.0 \ trainer.devices=[0] \ model.language_model.pretrained_model_name=facebook/bart-large \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf sgd_answer_extender_s2s' } } } } // stage('L2: Dialogue Generation Part 2') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('Dialogue: Answer Extender using DialogueGPTGenerationModel') { // steps { // sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ // python dialogue.py \ // do_training=False \ // model.dataset.data_dir=/home/TestData/nlp/ms-marco-qa \ // model.dataset.dialogues_example_dir=answer_extender \ // model.library=huggingface \ // model.dataset.task=ms_marco \ // model.dataset.debug_mode=True \ // trainer.val_check_interval=0.0 \ // trainer.devices=[0] \ // model.dataset.use_cache=false \ // model.language_model.pretrained_model_name=gpt2 \ // trainer.accelerator=gpu \ // exp_manager=null && \ // rm -rf answer_extender' // } // } // } // } stage('L2: COPY') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Dialogue: Answer Extender using DialogueGPTGenerationModel') { steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/dialogue && \ python dialogue.py \ do_training=False \ model.dataset.data_dir=/home/TestData/nlp/ms-marco-qa \ model.dataset.dialogues_example_dir=answer_extender \ model.library=huggingface \ model.dataset.task=ms_marco \ model.dataset.debug_mode=True \ trainer.val_check_interval=0.0 \ trainer.devices=[0] \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name=gpt2 \ trainer.accelerator=gpu \ exp_manager=null && \ rm -rf answer_extender' } } } } stage('L2: Duplex Text Normalization') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('Duplex Text Normalization with Tarred dataset') { steps { sh 'cd examples/nlp/duplex_text_normalization && \ python duplex_text_normalization_train.py \ data.validation_ds.data_path=/home/TestData/nlp/duplex_text_norm/small_test.tsv \ mode=tn \ lang=en \ tagger_model.do_training=false \ decoder_model.transformer=t5-small \ data.validation_ds.batch_size=2 \ data.train_ds.use_cache=false \ data.validation_ds.use_cache=false \ data.test_ds.batch_size=2 \ data.train_ds.decoder_data_augmentation=false \ data.train_ds.num_workers=2 \ decoder_trainer.devices=[0,1] \ decoder_trainer.accelerator="gpu" \ data.train_ds.use_tarred_dataset=true \ +decoder_trainer.fast_dev_run=true \ decoder_exp_manager.create_checkpoint_callback=false \ data.train_ds.tar_metadata_file=/home/TestData/nlp/duplex_text_norm/tarred_small/metadata.json \ data.test_ds.use_cache=false \ data.test_ds.data_path=/home/TestData/nlp/duplex_text_norm/small_test.tsv' } } } } // Runs out of memory on the 12G TITAN V (GPU 0 on main CI) // TODO: add when megatron bert is supported again in NeMo // stage('L2: MegaBERT Token Classification') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // steps { // sh 'cd examples/nlp/token_classification && \ // python token_classification_train.py \ // model.dataset.data_dir=/home/TestData/nlp/token_classification_punctuation/ \ // model.language_model.pretrained_model_name=megatron-bert-345m-uncased \ // model.train_ds.batch_size=10 \ // model.dataset.max_seq_length=50 \ // model.dataset.use_cache=false \ // trainer.accelerator=gpu \ // trainer.strategy=ddp \ // trainer.precision=16 \ // trainer.devices=[1] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // exp_manager=null' // } // } stage('L2: BERT Text Classification') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage ('Text Classification with BERT Test') { steps { sh 'cd examples/nlp/text_classification && \ python text_classification_with_bert.py \ model.dataset.num_classes=6 \ model.train_ds.file_path=/home/TestData/nlp/retail_text_classification/train.tsv \ model.validation_ds.file_path=/home/TestData/nlp/retail_text_classification/dev.tsv \ model.language_model.pretrained_model_name=distilbert-base-uncased \ model.train_ds.batch_size=10 \ model.dataset.max_seq_length=50 \ model.dataset.use_cache=false \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ exp_manager=null' } } } } stage('L2: Parallel BERT Question-Answering SQUAD v1.1 & v2.0') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('BERT SQUAD 1.1') { // Cannot do fast_dev_run because squad needs whole dev dataset steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/question_answering && \ python question_answering.py \ model.train_ds.file=/home/TestData/nlp/squad_mini/v1.1/train-v1.1.json \ model.dataset.use_cache=false \ model.validation_ds.file=/home/TestData/nlp/squad_mini/v1.1/dev-v1.1.json \ model.test_ds.file=/home/TestData/nlp/squad_mini/v1.1/dev-v1.1.json \ model.train_ds.batch_size=2 \ model.train_ds.num_samples=2 \ model.validation_ds.batch_size=2 \ model.validation_ds.num_samples=2 \ model.test_ds.num_samples=2 \ model.test_ds.batch_size=2 \ trainer.max_epochs=1 \ trainer.max_steps=1 \ model.language_model.pretrained_model_name=bert-base-uncased \ model.dataset.version_2_with_negative=false \ trainer.precision=16 \ trainer.devices=[0] \ trainer.accelerator="gpu" \ exp_manager=null && TRANSFORMERS_OFFLINE=1' } } stage('BERT SQUAD 2.0') { // Cannot do fast_dev_run because squad needs whole dev dataset steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/question_answering && \ python question_answering.py \ model.train_ds.file=/home/TestData/nlp/squad_mini/v2.0/train-v2.0.json \ model.dataset.use_cache=false \ model.train_ds.batch_size=2 \ model.train_ds.num_samples=2 \ model.validation_ds.batch_size=2 \ model.validation_ds.num_samples=2 \ trainer.max_epochs=1 \ trainer.max_steps=1 \ model.validation_ds.file=/home/TestData/nlp/squad_mini/v2.0/dev-v2.0.json \ model.language_model.pretrained_model_name=bert-base-uncased \ model.dataset.version_2_with_negative=true \ trainer.precision=16 \ trainer.devices=[1] \ trainer.accelerator="gpu" \ exp_manager=null && TRANSFORMERS_OFFLINE=1' } } } } stage('L2: Parallel BART Question-Answering SQUAD v1.1 & v2.0') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('BART SQUAD 1.1') { // Cannot do fast_dev_run because squad needs whole dev dataset steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/question_answering && \ python question_answering.py \ model.train_ds.file=/home/TestData/nlp/squad_mini/v1.1/train-v1.1.json \ model.dataset.use_cache=false \ model.dataset.check_if_answer_in_context=false \ model.validation_ds.file=/home/TestData/nlp/squad_mini/v1.1/dev-v1.1.json \ model.test_ds.file=/home/TestData/nlp/squad_mini/v1.1/dev-v1.1.json \ model.train_ds.batch_size=2 \ model.train_ds.num_samples=2 \ model.validation_ds.batch_size=2 \ model.validation_ds.num_samples=2 \ model.test_ds.num_samples=2 \ model.test_ds.batch_size=2 \ trainer.max_epochs=1 \ trainer.max_steps=1 \ model.language_model.pretrained_model_name=facebook/bart-base \ model.dataset.version_2_with_negative=false \ trainer.precision=16 \ trainer.devices=[0] \ trainer.accelerator="gpu" \ exp_manager=null && TRANSFORMERS_OFFLINE=1' } } stage('BART SQUAD 2.0') { // Cannot do fast_dev_run because squad needs whole dev dataset steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/question_answering && \ python question_answering.py \ model.train_ds.file=/home/TestData/nlp/squad_mini/v2.0/train-v2.0.json \ model.dataset.use_cache=false \ model.dataset.check_if_answer_in_context=false \ model.train_ds.batch_size=2 \ model.train_ds.num_samples=2 \ model.validation_ds.batch_size=2 \ model.validation_ds.num_samples=2 \ trainer.max_epochs=1 \ trainer.max_steps=1 \ model.validation_ds.file=/home/TestData/nlp/squad_mini/v2.0/dev-v2.0.json \ model.language_model.pretrained_model_name=facebook/bart-base \ model.dataset.version_2_with_negative=true \ trainer.precision=16 \ trainer.devices=[1] \ trainer.accelerator="gpu" \ exp_manager=null && TRANSFORMERS_OFFLINE=1' } } } } stage('L2: Parallel GPT2 Question-Answering SQUAD v1.1 & v2.0') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('GPT2 SQUAD 1.1') { // Cannot do fast_dev_run because squad needs whole dev dataset steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/question_answering && \ python question_answering.py \ model.train_ds.file=/home/TestData/nlp/squad_mini/v1.1/train-v1.1.json \ model.dataset.use_cache=false \ model.dataset.check_if_answer_in_context=false \ model.validation_ds.file=/home/TestData/nlp/squad_mini/v1.1/dev-v1.1.json \ model.test_ds.file=/home/TestData/nlp/squad_mini/v1.1/dev-v1.1.json \ model.train_ds.batch_size=2 \ model.train_ds.num_samples=2 \ model.validation_ds.batch_size=2 \ model.validation_ds.num_samples=2 \ model.test_ds.num_samples=2 \ model.test_ds.batch_size=2 \ trainer.max_epochs=1 \ trainer.max_steps=1 \ model.language_model.pretrained_model_name=gpt2 \ model.dataset.version_2_with_negative=false \ trainer.precision=16 \ trainer.devices=[0] \ trainer.accelerator="gpu" \ exp_manager=null && TRANSFORMERS_OFFLINE=1' } } stage('GPT2 SQUAD 2.0') { // Cannot do fast_dev_run because squad needs whole dev dataset steps { sh 'TRANSFORMERS_OFFLINE=0 && cd examples/nlp/question_answering && \ python question_answering.py \ model.train_ds.file=/home/TestData/nlp/squad_mini/v2.0/train-v2.0.json \ model.dataset.use_cache=false \ model.dataset.check_if_answer_in_context=false \ model.train_ds.batch_size=2 \ model.train_ds.num_samples=2 \ model.validation_ds.batch_size=2 \ model.validation_ds.num_samples=2 \ trainer.max_epochs=1 \ trainer.max_steps=1 \ model.validation_ds.file=/home/TestData/nlp/squad_mini/v2.0/dev-v2.0.json \ model.language_model.pretrained_model_name=gpt2 \ model.dataset.version_2_with_negative=true \ trainer.precision=16 \ trainer.devices=[1] \ trainer.accelerator="gpu" \ exp_manager=null && TRANSFORMERS_OFFLINE=1' } } } } stage('L2: Intent and Slot Classification Tasks') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('L2: Intent and Slot Classification') { steps { sh 'cd examples/nlp/intent_slot_classification && \ python intent_slot_classification.py \ model.data_dir=/home/TestData/nlp/retail \ model.validation_ds.prefix=dev \ model.test_ds.prefix=dev \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ exp_manager.exp_dir=checkpoints' sh 'rm -rf checkpoints' } } stage('L2: Multi-Label Intent and Slot Classification') { steps { sh 'cd examples/nlp/intent_slot_classification && \ python multi_label_intent_slot_classification.py \ model.data_dir=/home/TestData/nlp/new_multiatis \ model.validation_ds.prefix=dev \ model.test_ds.prefix=dev \ trainer.devices=[0] \ +trainer.fast_dev_run=true \ exp_manager.exp_dir=checkpoints2' sh 'rm -rf checkpoints2' } } } } // TODO: add when megatron-bert is supported again // stage('L2: Model Parallel Size 2 Megatron Text Classification') { // when { // anyOf{ // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // steps{ // sh 'cd examples/nlp/text_classification && \ // python text_classification_with_bert.py \ // trainer.devices=[0,1] \ // trainer.accelerator="gpu" \ // trainer.num_nodes=1 \ // trainer.precision=16 \ // trainer.gradient_clip_val=1.0 \ // +trainer.fast_dev_run=true \ // model.dataset.num_classes=6 \ // model.train_ds.file_path=/home/TestData/nlp/retail_text_classification/train.tsv \ // model.train_ds.batch_size=4 \ // model.language_model.pretrained_model_name=megatron-bert-uncased \ // model.language_model.config_file=/home/TestData/nlp/mp_2_bert_toy/config.json \ // model.language_model.lm_checkpoint=/home/TestData/nlp/mp_2_bert_toy/iter_2000000 \ // model.nemo_path=null \ // ~model.infer_samples \ // exp_manager=null' // } // } // stage('L2: Model Parallel Size 2 Megatron Autoresume') { // when { // anyOf{ // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // steps{ // sh 'cd examples/nlp/text_classification && \ // python text_classification_with_bert.py \ // trainer.devices=[0,1] \ // trainer.accelerator="gpu" \ // trainer.num_nodes=1 \ // trainer.precision=16 \ // trainer.gradient_clip_val=1.0 \ // trainer.max_epochs=1 \ // +trainer.fast_dev_run=true \ // model.dataset.num_classes=6 \ // model.train_ds.file_path=/home/TestData/nlp/retail_text_classification/train.tsv \ // model.train_ds.batch_size=4 \ // model.language_model.pretrained_model_name=megatron-bert-uncased \ // model.language_model.config_file=/home/TestData/nlp/mp_2_bert_toy/config.json \ // model.language_model.lm_checkpoint=/home/TestData/nlp/mp_2_bert_toy/iter_2000000 \ // model.nemo_path=null \ // ~model.infer_samples \ // +exp_manager.explicit_log_dir=/home/TestData/nlp/mp_autoresume \ // +exp_manager.resume_if_exists=true' // } // } // stage('L2: Model Parallel Size 2 Megatron Evaluation from .nemo') { // when { // anyOf{ // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // steps{ // sh 'cd examples/nlp/text_classification && \ // python model_parallel_text_classification_evaluation.py \ // trainer.devices=[0,1] \ // trainer.accelerator="gpu" \ // trainer.num_nodes=1 \ // model.dataset.num_classes=6 \ // model.test_ds.file_path=/home/TestData/nlp/retail_text_classification/dev.tsv \ // model.nemo_path=/home/TestData/nlp/mp_2_nemo/retail_text_class_350M.nemo \ // exp_manager=null' // } // } // stage('L2: Model Parallel Size 2 Megatron Train from .nemo') { // when { // anyOf{ // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // steps{ // sh 'cd examples/nlp/token_classification && \ // python token_classification_train.py \ // pretrained_model=/home/TestData/nlp/mp_2_nemo/ner_350M.nemo \ // model.dataset.data_dir=/home/TestData/nlp/ner/ \ // model.train_ds.batch_size=2 \ // model.dataset.use_cache=false \ // trainer.devices=[0,1] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // model.dataset.class_balancing="weighted_loss" \ // exp_manager=null' // } // } stage('L2: Parallel NLP Examples 2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage ('NER finetuning from pretrained Test') { steps { sh 'cd examples/nlp/token_classification && \ python token_classification_train.py \ pretrained_model=ner_en_bert \ model.dataset.data_dir=/home/TestData/nlp/ner/ \ model.train_ds.batch_size=2 \ model.dataset.use_cache=false \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ model.dataset.class_balancing="weighted_loss" \ exp_manager.exp_dir=null' } } stage ('Punctuation and capitalization finetuning from pretrained test') { steps { sh 'cd examples/nlp/token_classification && \ data_dir="$(mktemp -d -p "$(pwd)")" && \ cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}"/ && \ python punctuation_capitalization_train_evaluate.py \ pretrained_model=punctuation_en_bert \ model.train_ds.ds_item="${data_dir}" \ model.validation_ds.ds_item="${data_dir}" \ model.test_ds.ds_item="${data_dir}" \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ exp_manager.exp_dir=null && \ rm -rf "${data_dir}"' } } stage ('NER with TurkuNLP/bert-base-finnish-cased-v1') { steps { sh 'cd examples/nlp/token_classification && \ python token_classification_train.py \ model.dataset.data_dir=/home/TestData/nlp/token_classification_punctuation/ \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ model.dataset.use_cache=false \ model.language_model.pretrained_model_name="TurkuNLP/bert-base-finnish-cased-v1" \ exp_manager.exp_dir=null' } } stage('Evaluation script for Token Classification') { steps { sh 'python examples/nlp/token_classification/token_classification_evaluate.py \ model.dataset.data_dir=/home/TestData/nlp/ner/ \ model.dataset.use_cache=false \ pretrained_model=/home/TestData/nlp/pretrained_models/NER_Model_with_BERT_base_uncased.nemo' } } stage('Evaluation script for Punctuation') { steps { sh 'data_dir="$(mktemp -d -p "$(pwd)")" && \ cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}"/ && \ python examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py \ +do_training=false \ +do_testing=true \ model.test_ds.ds_item="${data_dir}" \ ~model.train_ds \ ~model.validation_ds \ +model.test_ds.use_cache=false \ pretrained_model=/home/TestData/nlp/pretrained_models/Punctuation_Capitalization_with_DistilBERT_base_uncased.nemo && \ rm -rf "${data_dir}"' } } stage('L2: Punctuation & Capitalization, 2GPUs with DistilBERT, Fine-tuning on different data') { steps { sh 'cd examples/nlp/token_classification && \ output_dir="$(mktemp -d -p "$(pwd)")" && \ tmp_data_dir="$(mktemp -d -p "$(pwd)")" && \ cp /home/TestData/nlp/token_classification_punctuation/*.txt "${tmp_data_dir}"/ && \ python punctuation_capitalization_train_evaluate.py \ model.train_ds.use_tarred_dataset=false \ model.train_ds.ds_item="${tmp_data_dir}" \ model.validation_ds.ds_item="${tmp_data_dir}" \ model.test_ds.ds_item="${tmp_data_dir}" \ model.language_model.pretrained_model_name=distilbert-base-uncased \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[0,1] \ trainer.accelerator="gpu" \ trainer.strategy=ddp \ trainer.max_epochs=1 \ +exp_manager.explicit_log_dir="${output_dir}" \ +do_testing=true && \ tmp_data_dir_2="$(mktemp -d -p "$(pwd)")" && \ mv "${tmp_data_dir}"/* "${tmp_data_dir_2}" && \ rm -rf "${tmp_data_dir}" && \ python punctuation_capitalization_train_evaluate.py \ model.train_ds.use_tarred_dataset=false \ model.train_ds.ds_item="${tmp_data_dir_2}" \ model.validation_ds.ds_item="${tmp_data_dir_2}" \ model.test_ds.ds_item="${tmp_data_dir_2}" \ pretrained_model="${output_dir}/checkpoints/Punctuation_and_Capitalization.nemo" \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[0,1] \ trainer.accelerator="gpu" \ trainer.strategy=ddp \ trainer.max_epochs=1 \ exp_manager=null && \ rm -rf /workspace/NeMo/examples/nlp/token_classification/nemo_experiments \ "${tmp_data_dir_2}" \ "${output_dir}"' } } } } stage('Punctuation & Capitalization tarred dataset') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true stages { stage('create and use tarred dataset') { steps { sh 'data_dir="$(mktemp -d -p "$(pwd)")" && \ cp -r /home/TestData/nlp/token_classification_punctuation/*.txt \ /home/TestData/nlp/token_classification_punctuation/wmt_wiki_10000 \ "${data_dir}"/ && \ usual_data=${data_dir}/wmt_wiki_10000 && \ output_dir="$(mktemp -d -p "$(pwd)")" && \ tarred_data=${output_dir}/train_tarred && \ tokens_in_batch=2000 && \ max_seq_length=512 && \ lm_model=distilbert-base-uncased && \ python examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py \ --text ${usual_data}/input.txt \ --labels ${usual_data}/labels.txt \ --output_dir ${tarred_data} \ --tokens_in_batch ${tokens_in_batch} \ --max_seq_length 512 \ --lines_per_dataset_fragment 2000 \ --num_batches_per_tarfile 5 \ --tar_file_prefix punctuation_capitalization \ --tokenizer_name ${lm_model} \ --use_fast_tokenizer \ --pad_label O \ --n_jobs 3 && \ echo "Number of tarred files in dataset:" && \ ls ${tarred_data}/*.tar | wc -l && \ echo "Label id files in dataset:" && \ ls ${tarred_data}/*.csv && \ metadata_file=${tarred_data}/metadata.punctuation_capitalization.tokens${tokens_in_batch}.max_seq_length${max_seq_length}.${lm_model}.json && \ python examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py \ model.validation_ds.ds_item="${data_dir}" \ model.test_ds.ds_item="${data_dir}" \ model.train_ds.ds_item=${tarred_data} \ model.language_model.pretrained_model_name=${lm_model} \ model.train_ds.use_tarred_dataset=true \ model.train_ds.tar_metadata_file=${metadata_file} \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[0,1] \ trainer.accelerator="gpu" \ trainer.strategy=ddp \ trainer.max_epochs=1 \ +exp_manager.explicit_log_dir=${output_dir}/output && \ rm -rf "${output_dir}" "${data_dir}"' } } } } stage('Punctuation & Capitalization, Different ways of passing labels to model') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true stages { stage('Punctuation & Capitalization, Using model.common_datasest_parameters.label_vocab_dir') { steps { sh 'cd examples/nlp/token_classification && \ work_dir="$(mktemp -d -p "$(pwd)")" && \ label_vocab_dir="${work_dir}/labels" && \ mkdir -p ${label_vocab_dir} && \ data_dir="${work_dir}/data" && \ mkdir -p "${data_dir}" && \ cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}" && \ output_dir="${work_dir}/output" && \ mkdir -p "${output_dir}" && \ punct_label_vocab="${label_vocab_dir}/punct_label_vocab.csv" && \ capit_label_vocab="${label_vocab_dir}/capit_label_vocab.csv" && \ printf "O\n,\n.\n?\n" > "${punct_label_vocab}" && \ printf "O\nU\n" > "${capit_label_vocab}" && \ python punctuation_capitalization_train_evaluate.py \ model.train_ds.use_tarred_dataset=false \ model.train_ds.ds_item="${data_dir}" \ model.validation_ds.ds_item="${data_dir}" \ model.test_ds.ds_item="${data_dir}" \ model.language_model.pretrained_model_name=distilbert-base-uncased \ model.common_dataset_parameters.label_vocab_dir="${label_vocab_dir}" \ model.class_labels.punct_labels_file="$(basename "${punct_label_vocab}")" \ model.class_labels.capit_labels_file="$(basename "${capit_label_vocab}")" \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[0,1] \ trainer.strategy=ddp \ trainer.max_epochs=1 \ +exp_manager.explicit_log_dir="${output_dir}" \ +do_testing=false && \ python punctuation_capitalization_train_evaluate.py \ +do_training=false \ +do_testing=true \ ~model.train_ds \ ~model.validation_ds \ model.test_ds.ds_item="${data_dir}" \ pretrained_model="${output_dir}/checkpoints/Punctuation_and_Capitalization.nemo" \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[0,1] \ trainer.strategy=ddp \ trainer.max_epochs=1 \ exp_manager=null && \ rm -rf "${work_dir}"' } } stage('Punctuation & Capitalization, Using model.common_datasest_parameters.{punct,capit}_label_ids') { steps { sh 'cd examples/nlp/token_classification && \ work_dir="$(mktemp -d -p "$(pwd)")" && \ output_dir="${work_dir}/output" && \ mkdir -p "${output_dir}" && \ data_dir="${work_dir}/data" && \ mkdir -p "${data_dir}" && \ cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}" && \ conf_name=punctuation_capitalization_config_with_ids && \ cp conf/punctuation_capitalization_config.yaml "${work_dir}/${conf_name}.yaml" && \ sed -i $\'s/punct_label_ids: null/punct_label_ids: {O: 0, \\\',\\\': 1, .: 2, \\\'?\\\': 3}/\' \ "${work_dir}/${conf_name}.yaml" && \ sed -i $\'s/capit_label_ids: null/capit_label_ids: {O: 0, U: 1}/\' \ "${work_dir}/${conf_name}.yaml" && \ python punctuation_capitalization_train_evaluate.py \ --config-path "${work_dir}" \ --config-name "${conf_name}" \ model.train_ds.use_tarred_dataset=false \ model.train_ds.ds_item="${data_dir}" \ model.validation_ds.ds_item="${data_dir}" \ model.test_ds.ds_item="${data_dir}" \ model.language_model.pretrained_model_name=distilbert-base-uncased \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[0,1] \ trainer.strategy=ddp \ trainer.max_epochs=1 \ +exp_manager.explicit_log_dir="${output_dir}" \ +do_testing=false && \ python punctuation_capitalization_train_evaluate.py \ +do_training=false \ +do_testing=true \ ~model.train_ds \ ~model.validation_ds \ model.test_ds.ds_item="${data_dir}" \ pretrained_model="${output_dir}/checkpoints/Punctuation_and_Capitalization.nemo" \ +model.train_ds.use_cache=false \ +model.validation_ds.use_cache=false \ +model.test_ds.use_cache=false \ trainer.devices=[0,1] \ trainer.strategy=ddp \ trainer.max_epochs=1 \ exp_manager=null && \ rm -rf "${work_dir}"' } } } } stage('Punctuation & Capitalization inference') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true stages { stage('Restore punctuation and capitalization in long text') { steps { sh 'output_dir="$(mktemp -d -p "$(pwd)")" && \ python examples/nlp/token_classification/punctuate_capitalize_infer.py \ --input_manifest /home/TestData/nlp/token_classification_punctuation/iwslt_tst2019.manifest \ --output_text "${output_dir}/iwslt_inference_result.txt" \ --max_seq_length 92 \ --step 8 \ --margin 16 \ --pretrained_name punctuation_en_bert \ --batch_size 32 && \ rm -rf "${output_dir}"' } } } } stage('L2: Parallel Pretraining BERT pretraining from Text/Preprocessed') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('L2: Pretraining BERT pretraining from Text') { steps { sh 'cd examples/nlp/language_modeling && \ python bert_pretraining.py \ --config-name=bert_pretraining_from_text_config.yaml \ trainer.devices=[0] \ trainer.accelerator="gpu" \ trainer.precision=16 \ +trainer.fast_dev_run=true \ model.train_ds.data_file=/home/TestData/nlp/wikitext-2/train.txt \ model.train_ds.batch_size=32 \ model.validation_ds.data_file=/home/TestData/nlp/wikitext-2/valid.txt \ model.validation_ds.batch_size=32 \ model.language_model.config_file=/home/TestData/nlp/bert_configs/bert_3200.json \ model.optim.lr=0.01 \ model.optim.sched.warmup_ratio=0.1 \ model.tokenizer.tokenizer_name=sentencepiece \ model.tokenizer.tokenizer_model=/home/TestData/nlp/wikitext-2/tokenizer_bpe_v3193/tokenizer.model \ model.mask_prob=0.15 \ model.short_seq_prob=0.1 \ exp_manager.exp_dir=PretrainingBERTFromText \ ' sh 'rm -f /home/TestData/nlp/wikitext-2/*.pkl' sh 'rm -rf examples/nlp/language_modeling/PretrainingBERTFromText' sh 'ls -lha examples/nlp/language_modeling' } } stage('L2: Pretraining BERT from Preprocessed') { steps { sh 'cd examples/nlp/language_modeling && \ python bert_pretraining.py \ --config-name=bert_pretraining_from_preprocessed_config.yaml \ trainer.devices=[1] \ trainer.accelerator="gpu" \ trainer.precision=16 \ +trainer.fast_dev_run=true \ model.train_ds.data_file=/home/TestData/nlp/wiki_book_mini/training \ model.train_ds.batch_size=8 \ model.language_model.lm_checkpoint=/home/TestData/nlp/bert_ckpts/nemo1.0/bert_base_uncased_mlm_final_1074591_nemo1.0.pt \ model.language_model.config_file=/home/TestData/nlp/bert_configs/uncased_L-12_H-768_A-12.json \ model.optim.lr=0.875e-4 \ model.optim.weight_decay=0.01 \ model.optim.sched.warmup_ratio=0.01 \ exp_manager.exp_dir=PretrainingBERTFromPreprocessed \ exp_manager.create_checkpoint_callback=False \ ' sh 'rm -rf examples/nlp/language_modeling/PretrainingBERTFromPreprocessed' sh 'ls -lha examples/nlp/language_modeling' } } } } stage('L2: Entity Linking') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage ('Self Alignment Pretraining BERT') { steps { sh 'cd examples/nlp/entity_linking && \ python self_alignment_pretraining.py \ project_dir=. \ trainer.val_check_interval=3 \ model.raw_data=None \ model.train_ds.data_file=/home/TestData/nlp/entity_linking/tiny_example_train_pairs.tsv \ model.validation_ds.data_file=/home/TestData/nlp/entity_linking/tiny_example_validation_pairs.tsv \ model.train_ds.batch_size=8 \ model.validation_ds.batch_size=8 \ exp_manager.exp_dir=null' } } } } // TODO: remove +model.optim.capturable=True when Pytorch fix: https://github.com/pytorch/pytorch/pull/81858 // is in the release container stage('L2: NMT Attention is All You Need Training') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('L2: NMT Training Post-LN') { steps { sh 'python examples/nlp/machine_translation/enc_dec_nmt.py \ --config-path=conf \ --config-name=aayn_base \ do_testing=false \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ model.encoder.num_layers=1 \ model.encoder.hidden_size=64 \ model.encoder.inner_size=256 \ model.decoder.num_layers=1 \ model.decoder.hidden_size=64 \ model.decoder.inner_size=256 \ +model.optim.capturable=True \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.val_check_interval=2 \ +trainer.limit_val_batches=1 \ +trainer.max_steps=2 \ trainer.precision=16 \ +exp_manager.explicit_log_dir=examples/nlp/machine_translation/nmt_results \ +exp_manager.create_checkpoint_callback=true \ ' sh 'python examples/nlp/machine_translation/enc_dec_nmt.py \ --config-path=conf \ --config-name=aayn_base \ do_testing=true \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ model.encoder.num_layers=1 \ model.encoder.hidden_size=64 \ model.encoder.inner_size=256 \ model.decoder.num_layers=1 \ model.decoder.hidden_size=64 \ model.decoder.inner_size=256 \ +model.optim.capturable=True \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.val_check_interval=10 \ +trainer.limit_val_batches=1 \ +trainer.limit_test_batches=1 \ +trainer.max_steps=10 \ +exp_manager.explicit_log_dir=examples/nlp/machine_translation/nmt_results \ +exp_manager.create_checkpoint_callback=true \ +exp_manager.resume_if_exists=True \ ' sh 'rm -rf examples/nlp/machine_translation/nmt_results' } } stage('L2: NMT Training Pre-LN') { steps { sh 'cd examples/nlp/machine_translation && \ python enc_dec_nmt.py \ --config-path=conf \ --config-name=aayn_base \ do_testing=true \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ model.encoder.pre_ln=true \ model.decoder.pre_ln=true \ trainer.devices=[1] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ +trainer.limit_test_batches=2 \ exp_manager=null \ ' } } stage('L2: NMT Multi-Validation') { steps { sh 'cd examples/nlp/machine_translation && \ python enc_dec_nmt.py \ --config-path=conf \ --config-name=aayn_base \ do_testing=true \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref \ model.validation_ds.src_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src] \ model.validation_ds.tgt_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref] \ model.test_ds.src_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src] \ model.test_ds.tgt_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref] \ model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ +trainer.limit_test_batches=2 \ exp_manager=null \ ' } } } } stage('L2: NMT Attention is All You Need Inference') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('L2: NMT Inference - PostLN') { steps { sh 'cd examples/nlp/machine_translation && \ python nmt_transformer_infer.py \ --model=/home/TestData/nlp/nmt/toy_data/TransformerLargeDe-En.nemo \ --srctext=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.test.src \ --tgtout=/home/TestData/nlp/nmt/toy_data/out.txt \ --target_lang en \ --source_lang de \ ' } } stage('L2: NMT Inference - Pre-LN') { steps { sh 'cd examples/nlp/machine_translation && \ python nmt_transformer_infer.py \ --model=/home/TestData/nlp/nmt/toy_data/en_de_24x6_preln.nemo \ --srctext=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.test.src \ --tgtout=/home/TestData/nlp/nmt/toy_data/out.txt \ --target_lang de \ --source_lang en \ ' } } } } stage('L2: NMT Attention is All You Need Finetuning') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "cd examples/nlp/machine_translation && \ python enc_dec_nmt_finetune.py \ model_path=/home/TestData/nlp/nmt/toy_data/en_de_24x6_preln.nemo \ trainer.devices=[0] \ ~trainer.max_epochs \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ +trainer.val_check_interval=10 \ +trainer.limit_val_batches=1 \ +trainer.limit_test_batches=1 \ +trainer.max_steps=10 \ +exp_manager.exp_dir=examples/nlp/machine_translation/nmt_finetune \ +exp_manager.create_checkpoint_callback=True \ +exp_manager.checkpoint_callback_params.monitor=val_sacreBLEU \ +exp_manager.checkpoint_callback_params.mode=max \ +exp_manager.checkpoint_callback_params.save_best_model=true \ " sh "rm -rf examples/nlp/machine_translation/nmt_finetune" } } stage('L2: NMT Tarred Dataset Creation') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { stage('L2: NMT Auto Tarred Dataset Creation') { steps { sh 'cd examples/nlp/machine_translation && \ python enc_dec_nmt.py \ --config-path=conf \ --config-name=aayn_base \ do_training=false \ model.preproc_out_dir=$PWD/preproc_out_dir \ model.train_ds.use_tarred_dataset=true \ model.train_ds.n_preproc_jobs=2 \ model.train_ds.lines_per_dataset_fragment=500 \ model.train_ds.num_batches_per_tarfile=10 \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.encoder_tokenizer.vocab_size=2000 \ model.decoder_tokenizer.vocab_size=2000 \ ~model.test_ds \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.fast_dev_run=true \ exp_manager=null \ ' } } stage('L2: NMT Script Tarred Dataset Creation') { steps { sh 'cd examples/nlp/machine_translation && \ python create_tarred_parallel_dataset.py \ --src_fname /home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ --tgt_fname /home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ --out_dir $PWD/out_dir \ --encoder_tokenizer_vocab_size=2000 \ --decoder_tokenizer_vocab_size=2000 \ --tokens_in_batch=1000 \ --lines_per_dataset_fragment=500 \ --num_batches_per_tarfile=10 \ --n_preproc_jobs=2 \ ' } } } } stage('L2: Megatron NMT Training TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/machine_translation/megatron_nmt_training.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ +trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/machine_translation/megatron_nmt_results \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.masked_softmax_fusion=False \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.decoder.num_layers=2 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='swiglu' \ model.decoder.masked_softmax_fusion=False \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.micro_batch_size=2 \ model.global_batch_size=4 \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ ~model.test_ds \ model.train_ds.dataset_type=text_memmap \ model.encoder_tokenizer.library=sentencepiece \ model.encoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model \ model.decoder_tokenizer.library=sentencepiece \ model.decoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model" sh "python examples/nlp/machine_translation/megatron_nmt_training.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ +trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/machine_translation/megatron_nmt_results \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.masked_softmax_fusion=False \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.decoder.num_layers=2 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='swiglu' \ model.decoder.masked_softmax_fusion=False \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.micro_batch_size=2 \ model.global_batch_size=4 \ model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ ~model.test_ds \ model.train_ds.dataset_type=text_memmap \ model.encoder_tokenizer.library=sentencepiece \ model.encoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model \ model.decoder_tokenizer.library=sentencepiece \ model.decoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model" sh "rm -rf examples/nlp/machine_translation/megatron_nmt_results" } } // stage('L2: NMT Bottleneck Fallback') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('L2: seq2seq (no bottleneck)') { // steps { // sh 'cd examples/nlp/machine_translation && \ // enc_dec_nmt-bottleneck.py \ // --config-path=conf \ // --config-name=aayn_bottleneck \ // do_testing=true \ // model.model_type=nll \ // model.encoder.arch=seq2seq \ // model.encoder.hidden_steps=1 \ // model.encoder.hidden_blocks=1 \ // model.encoder.hidden_init_method=params \ // model.encoder.hidden_size=64 \ // model.encoder.inner_size=128 \ // model.encoder.num_attention_heads=2 \ // model.encoder.num_layers=2 \ // model.decoder.hidden_size=64 \ // model.decoder.inner_size=128 \ // model.decoder.num_attention_heads=2 \ // model.decoder.num_layers=2 \ // model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src \ // model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref \ // model.validation_ds.src_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src] \ // model.validation_ds.tgt_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref] \ // model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src \ // model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref \ // model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // trainer.devices=[1] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // +trainer.limit_test_batches=2 \ // exp_manager=null \ // ' // } // } // } // } // stage('L2: NMT Bottleneck Architecture') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('Bridge Encoder (identity)') { // steps { // sh 'cd examples/nlp/machine_translation && \ // enc_dec_nmt-bottleneck.py \ // --config-path=conf \ // --config-name=aayn_bottleneck \ // do_testing=true \ // model.model_type=nll \ // model.encoder.arch=bridge \ // model.encoder.hidden_steps=1 \ // model.encoder.hidden_blocks=1 \ // model.encoder.hidden_init_method=identity \ // model.encoder.hidden_size=64 \ // model.encoder.inner_size=128 \ // model.encoder.num_attention_heads=2 \ // model.encoder.num_layers=2 \ // model.decoder.hidden_size=64 \ // model.decoder.inner_size=128 \ // model.decoder.num_attention_heads=2 \ // model.decoder.num_layers=2 \ // model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ // model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // +trainer.limit_test_batches=2 \ // exp_manager=null \ // ' // } // } // stage('Perceiver Encoder (params)') { // steps { // sh 'cd examples/nlp/machine_translation && \ // enc_dec_nmt-bottleneck.py \ // --config-path=conf \ // --config-name=aayn_bottleneck \ // do_testing=true \ // model.model_type=nll \ // model.encoder.arch=perceiver \ // model.encoder.hidden_steps=1 \ // model.encoder.hidden_blocks=1 \ // model.encoder.hidden_init_method=params \ // model.encoder.hidden_size=64 \ // model.encoder.inner_size=128 \ // model.encoder.num_attention_heads=2 \ // model.encoder.num_layers=2 \ // model.decoder.hidden_size=64 \ // model.decoder.inner_size=128 \ // model.decoder.num_attention_heads=2 \ // model.decoder.num_layers=2 \ // model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ // model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // trainer.devices=[1] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // +trainer.limit_test_batches=2 \ // exp_manager=null \ // ' // } // } // } // } // stage('L2: NMT Bottleneck LVM') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel { // stage('VAE') { // steps { // sh 'cd examples/nlp/machine_translation && \ // enc_dec_nmt-bottleneck.py \ // --config-path=conf \ // --config-name=aayn_bottleneck \ // do_testing=true \ // model.model_type=vae \ // model.encoder.arch=perceiver \ // model.encoder.hidden_steps=1 \ // model.encoder.hidden_blocks=1 \ // model.encoder.hidden_init_method=params \ // model.encoder.hidden_size=64 \ // model.encoder.inner_size=128 \ // model.encoder.num_attention_heads=2 \ // model.encoder.num_layers=2 \ // model.decoder.hidden_size=64 \ // model.decoder.inner_size=128 \ // model.decoder.num_attention_heads=2 \ // model.decoder.num_layers=2 \ // model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ // model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // trainer.devices=[0] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // +trainer.limit_test_batches=2 \ // exp_manager=null \ // ' // } // } // stage('MIM') { // steps { // sh 'cd examples/nlp/machine_translation && \ // enc_dec_nmt-bottleneck.py \ // --config-path=conf \ // --config-name=aayn_bottleneck \ // do_testing=true \ // model.model_type=mim \ // model.encoder.arch=perceiver \ // model.encoder.hidden_steps=1 \ // model.encoder.hidden_blocks=1 \ // model.encoder.hidden_init_method=params \ // model.encoder.hidden_size=64 \ // model.encoder.inner_size=128 \ // model.encoder.num_attention_heads=2 \ // model.encoder.num_layers=2 \ // model.decoder.hidden_size=64 \ // model.decoder.inner_size=128 \ // model.decoder.num_attention_heads=2 \ // model.decoder.num_layers=2 \ // model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \ // model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \ // model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \ // trainer.devices=[1] \ // trainer.accelerator="gpu" \ // +trainer.fast_dev_run=true \ // +trainer.limit_test_batches=2 \ // exp_manager=null \ // ' // } // } // } // } stage('L2: Megatron Bert Pretraining and Resume Training with Pipeline Paralleism') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_bert_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \ model.pipeline_model_parallel_size=2 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.data.seq_length=128 \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \ model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings" sh "python examples/nlp/language_modeling/megatron_bert_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=20 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \ exp_manager.resume_if_exists=True \ model.pipeline_model_parallel_size=2 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.data.seq_length=128 \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \ model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings" sh "rm -rf examples/nlp/language_modeling/bert_pretrain_results" sh "rm -rf examples/nlp/language_modeling/bert_index_mappings" } } stage('L2: Megatron Bert Pretraining and Resume Training') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_bert_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \ model.tensor_model_parallel_size=2 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.sequence_parallel=True \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.data.seq_length=128 \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \ model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings" sh "python examples/nlp/language_modeling/megatron_bert_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=20 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \ exp_manager.resume_if_exists=True \ model.tensor_model_parallel_size=2 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.data.seq_length=128 \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \ model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings" sh "rm -rf examples/nlp/language_modeling/bert_pretrain_results" sh "rm -rf examples/nlp/language_modeling/bert_index_mappings" } } stage('L2: Megatron RETRO Pretraining and Resume Training') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_retro_pretraining.py \ trainer.devices=2 \ trainer.num_nodes=1 \ trainer.accelerator=gpu \ trainer.accumulate_grad_batches=1 \ trainer.limit_val_batches=2 \ exp_manager.resume_if_exists=True \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ trainer.val_check_interval=10 \ exp_manager.exp_dir=examples/nlp/language_modeling/retro_results \ model.data.data_prefix='' \ model.data.knn_index='' \ model.data.retrieval_prefix='' \ model.tensor_model_parallel_size=2 \ model.micro_batch_size=4 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.chunk_size=32 \ model.enc_num_layers=2 \ model.dec_num_layers=2 \ model.enc_cross_attention=[1] \ model.dec_cross_attention=[1] \ +model.data.mock=True" sh "python examples/nlp/language_modeling/megatron_retro_pretraining.py \ trainer.devices=2 \ trainer.num_nodes=1 \ trainer.accelerator=gpu \ trainer.accumulate_grad_batches=1 \ trainer.limit_val_batches=2 \ exp_manager.resume_if_exists=True \ trainer.max_steps=20 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ trainer.val_check_interval=10 \ exp_manager.exp_dir=examples/nlp/language_modeling/retro_results \ model.data.data_prefix='' \ model.data.knn_index='' \ model.data.retrieval_prefix='' \ model.tensor_model_parallel_size=2 \ model.micro_batch_size=4 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.chunk_size=32 \ model.enc_num_layers=2 \ model.dec_num_layers=2 \ model.enc_cross_attention=[1] \ model.dec_cross_attention=[1] \ +model.data.mock=True" sh "rm -rf examples/nlp/language_modeling/retro_results" } } stage('L2: Megatron RETRO muTransfer Pretraining Performance') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_retro_mutransfer_pretrain.py \ trainer.devices=2 \ trainer.num_nodes=1 \ trainer.accelerator=gpu \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=100 \ trainer.log_every_n_steps=1 \ trainer.precision=16 \ trainer.val_check_interval=100 \ trainer.limit_val_batches=0 \ trainer.gradient_clip_val=1.0 \ +trainer.num_sanity_val_steps=0 \ exp_manager.exp_dir=examples/nlp/language_modeling/retro_results/ \ +exp_manager.version=smalltest \ model.data.neighbors=2 \ model.megatron_amp_O2=False \ model.apply_query_key_layer_scaling=False \ model.tensor_model_parallel_size=1 \ model.optim.name=muadamw \ model.optim.weight_decay=0.1 \ model.optim.betas=[0.9,0.95] \ model.optim.lr=6e-4 \ model.optim.sched.warmup_steps=1000 \ model.optim.sched.constant_steps=0 \ model.optim.sched.min_lr=6e-5 \ model.add_position_embedding=False \ model.enc_num_layers=2 \ model.dec_num_layers=6 \ model.enc_cross_attention=[0] \ model.dec_cross_attention=[3,5] \ model.hidden_size=96 \ model.ffn_hidden_size=384 \ model.init_method_std=0.023 \ model.num_attention_heads=12 \ model.max_position_embeddings=1024 \ model.encoder_seq_length=1024 \ model.tokenizer.library=megatron \ model.tokenizer.type=GPT2BPETokenizer \ model.tokenizer.merge_file=/home/TestData/nlp/megatron_retro/gpt2-merges.txt \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_retro/gpt2-vocab.json \ model.data.data_prefix=[/home/TestData/nlp/megatron_retro/retro_wiki_test_text_document] \ model.data.knn_index=[/home/TestData/nlp/megatron_retro/knn2_map_wiki_test.idx] \ model.data.retrieval_prefix=/home/TestData/nlp/megatron_retro/retro_wiki_test_text_document \ model.data.index_mapping_dir=/home/TestData/nlp/megatron_retro \ model.data.num_workers=8 \ model.micro_batch_size=8 \ model.normalization=rmsnorm \ model.transformer_block_type=pre_ln \ model.bias_activation_fusion=True \ model.bias_dropout_add_fusion=False \ model.masked_softmax_fusion=True \ model.hidden_dropout=0 \ model.attention_dropout=0 \ model.fp32_residual_connection=True \ model.shape_file=/home/TestData/nlp/megatron_retro/o1_rel_shape_info_tiny.yaml" sh '''python -c "import pandas as pd import pathlib from pandas.testing import assert_frame_equal from tensorboard.backend.event_processing.event_accumulator import EventAccumulator import torch if not (torch.cuda.is_available() and 'A100' in torch.cuda.get_device_name()): import sys sys.exit(0) event_file = list(pathlib.Path('examples/nlp/language_modeling/retro_results/megatron_retro/smalltest').glob('events.out.tfevents*'))[0] ea = EventAccumulator(str(event_file)).Reload() vals = [] for i in ea.Scalars('reduced_train_loss'): vals.append(i.value) training_curve = pd.DataFrame({'loss': vals}) gt_curve = pd.read_csv('/home/TestData/nlp/megatron_retro/expected_learning_curve.csv') assert_frame_equal(training_curve, gt_curve, rtol=1e-3, atol=1e-3)"''' sh "rm -rf examples/nlp/language_modeling/retro_results" } } stage('L2: BioMegatron Bert NER Task') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/token_classification/token_classification_train.py \ exp_manager.exp_dir=examples/nlp/language_modeling/token_classification_results \ trainer.max_epochs=1 \ model.dataset.data_dir=/home/TestData/nlp/ner \ model.language_model.pretrained_model_name=biomegatron345m_biovocab_30k_cased \ model.tokenizer.tokenizer_name=null" sh "rm -rf examples/nlp/language_modeling/token_classification_results" } } stage('L2: Megatron GPT Pretraining and Resume Training TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_gpt_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=2 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=3 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \ model.tensor_model_parallel_size=2 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=1 \ model.optim.sched.constant_steps=1 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.data.seq_length=128 \ model.position_embedding_type=rope \ model.rotary_percentage=0.5 \ model.normalization=rmsnorm \ model.bias=False \ model.bias_activation_fusion=False \ model.bias_dropout_add_fusion=False \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \ model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings" sh "python examples/nlp/language_modeling/megatron_gpt_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=2 \ trainer.limit_val_batches=1 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=6 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \ exp_manager.resume_if_exists=True \ model.tensor_model_parallel_size=2 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.data.seq_length=128 \ model.position_embedding_type=rope \ model.rotary_percentage=0.5 \ model.normalization=rmsnorm \ model.bias=False \ model.bias_activation_fusion=False \ model.bias_dropout_add_fusion=False \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \ model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings" sh "rm -rf examples/nlp/language_modeling/gpt_pretrain_results" sh "rm -rf examples/nlp/language_modeling/gpt_index_mappings" } } stage('L2: Megatron GPT Pretraining and Resume Training PP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_gpt_pretraining.py \ trainer.devices=2 \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=2 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=3 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \ model.pipeline_model_parallel_size=2 \ model.tensor_model_parallel_size=1 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=1 \ model.optim.sched.constant_steps=1 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.activation=fast-swiglu \ model.bias_activation_fusion=False \ model.hidden_dropout=0.0 \ model.attention_dropout=0.0 \ model.transformer_block_type=normformer \ model.headscale=True \ model.data.seq_length=128 \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \ model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings" sh "python examples/nlp/language_modeling/megatron_gpt_pretraining.py \ trainer.devices=2 \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=2 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=6 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \ exp_manager.resume_if_exists=True \ model.pipeline_model_parallel_size=2 \ model.tensor_model_parallel_size=1 \ model.optim.name=fused_adam \ model.optim.lr=2e-4 \ model.optim.sched.warmup_steps=2 \ model.optim.sched.constant_steps=2 \ model.optim.sched.min_lr=8e-5 \ model.max_position_embeddings=128 \ model.encoder_seq_length=128 \ model.activation=fast-swiglu \ model.bias_activation_fusion=False \ model.hidden_dropout=0.0 \ model.attention_dropout=0.0 \ model.transformer_block_type=normformer \ model.headscale=True \ model.data.seq_length=128 \ model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \ model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \ model.num_layers=8 \ model.hidden_size=256 \ model.num_attention_heads=8 \ model.activations_checkpoint_method='block' \ model.activations_checkpoint_num_layers=1 \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings" sh "rm -rf examples/nlp/language_modeling/gpt_pretrain_results" sh "rm -rf examples/nlp/language_modeling/gpt_index_mappings" } } stage('L2: Megatron GPT Eval') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps{ sh "python examples/nlp/language_modeling/megatron_gpt_eval.py \ gpt_model_file=/home/TestData/nlp/megatron_gpt/125M/megatron_gpt.nemo \ prompts=['How to fix GPU memory? A:'] \ tensor_model_parallel_size=1 \ inference.tokens_to_generate=32 \ trainer.precision=16" } } stage('L2: Megatron GPT Eval PP2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_gpt_eval.py \ gpt_model_file=/home/TestData/nlp/megatron_gpt/PP2/gpt_pp2_tp1.nemo \ server=False \ tensor_model_parallel_size=1 \ pipeline_model_parallel_size=2 \ trainer.devices=2 \ trainer.num_nodes=1" } } stage('L2: Megatron GPT Prompt Tuning TP1 PP1') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('GPT Prompt Learning TP=1 PP=1') { steps { sh "python examples/nlp/language_modeling/megatron_gpt_prompt_learning.py \ --config-name=megatron_gpt_prompt_learning_config \ name='/home/TestData/nlp/prompt_learning/prompt_tuning_test' \ trainer.devices=1 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=1 \ model.virtual_prompt_style='p-tuning' \ model.p_tuning.encoder_type='embedding' \ model.language_model_path='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp1_pp1.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "rm -rf /home/TestData/nlp/prompt_learning/prompt_tuning_test" sh "rm -rf /home/TestData/nlp/prompt_learning/prompt_tuning_test.nemo" } } } } stage('L2: Megatron GPT Prompt Tuning TP2 PP1') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('GPT Prompt Learning TP=2 PP=1') { steps { sh "python examples/nlp/language_modeling/megatron_gpt_prompt_learning.py \ --config-name=megatron_gpt_prompt_learning_config \ name='/home/TestData/nlp/prompt_learning/p_tuning_test_tp' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp2_pp1.nemo' \ model.existing_tasks=[] \ model.new_tasks=['rte'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl'] \ model.global_batch_size=4" sh "rm -rf /home/TestData/nlp/prompt_learning/p_tuning_test_tp" sh "python examples/nlp/language_modeling/megatron_gpt_prompt_learning_eval.py \ virtual_prompt_model_file='/home/TestData/nlp/prompt_learning/p_tuning_test_tp.nemo' \ gpt_model_file='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp2_pp1.nemo' \ inference.greedy=True \ inference.add_BOS=False \ trainer.devices=2 \ tensor_model_parallel_size=2 \ pred_file_path=/home/TestData/nlp/prompt_learning/p_tuning_test_tp_preds.txt \ data_paths=['/home/TestData/nlp/prompt_learning/rte_CI_test.jsonl']" sh "rm -rf /home/TestData/nlp/prompt_learning/p_tuning_test_tp.nemo" sh "rm -rf /home/TestData/nlp/prompt_learning/p_tuning_test_tp_preds.txt" } } } } // TODO: add when https://github.com/NVIDIA/apex/pull/1596 is merged // stage('L2: Megatron GPT Prompt Tuning TP1 PP2') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel{ // stage('GPT Prompt Learning TP=1 PP=2') { // steps { // sh "python examples/nlp/language_modeling/megatron_gpt_prompt_learning.py \ // --config-name=megatron_gpt_prompt_learning_config \ // name='/home/TestData/nlp/prompt_learning/p_tuning_test_pp' \ // trainer.devices=2 \ // trainer.max_steps=1 \ // trainer.val_check_interval=1 \ // trainer.max_epochs=null \ // model.optim.name=fused_adam \ // model.data.num_workers=1 \ // model.pipeline_model_parallel_size=2 \ // model.language_model_path='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp1_pp2.nemo' \ // model.existing_tasks=[] \ // model.new_tasks=['boolq'] \ // model.data.train_ds=['/home/TestData/nlp/prompt_learning/boolq_CI_test.jsonl'] \ // model.data.validation_ds=['/home/TestData/nlp/prompt_learning/boolq_CI_test.jsonl'] \ // model.global_batch_size=4" // sh "rm -rf /home/TestData/nlp/prompt_learning/p_tuning_test_pp" // sh "python examples/nlp/language_modeling/megatron_gpt_prompt_learning_eval.py \ // virtual_prompt_model_file='/home/TestData/nlp/prompt_learning/p_tuning_test_pp.nemo' \ // gpt_model_file='/home/TestData/nlp/megatron_gpt/tiny/megatron_14m_gpt_tp1_pp2.nemo' \ // inference.greedy=True \ // inference.add_BOS=False \ // trainer.devices=2 \ // pipeline_model_parallel_size=2 \ // pred_file_path=/home/TestData/nlp/prompt_learning/p_tuning_test_pp_preds.txt \ // data_paths=['/home/TestData/nlp/prompt_learning/boolq_CI_test.jsonl']" // sh "rm -rf /home/TestData/nlp/prompt_learning/p_tuning_test_pp.nemo" // sh "rm -rf /home/TestData/nlp/prompt_learning/p_tuning_test_pp_preds.txt" // } // } // } // } // TODO: Add this test back. Test was failing on CI machines due to HW error // stage('L2: Megatron GPT Convert from Megatron-LM checkpoing and Eval') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // steps { // sh "python -m torch.distributed.launch --nproc_per_node=2 \ // examples/nlp/language_modeling/megatron_lm_ckpt_to_nemo.py \ // --checkpoint_folder=/home/TestData/nlp/megatron_gpt/data/gpt/iter_0008700 \ // --checkpoint_name=model_optim_rng.pt \ // --hparams_file=/home/TestData/nlp/megatron_gpt/data/gpt/iter_0008700/hparams.yaml \ // --nemo_file_path=examples/nlp/language_modeling/small_gpt.nemo \ // --model_type=gpt \ // --pipeline_model_parallel_size=1 \ // --gpus_per_node=2 \ // --tensor_model_parallel_size=2" // sh "python examples/nlp/language_modeling/megatron_gpt_eval.py \ // --gpt_model_file=examples/nlp/language_modeling/small_gpt.nemo \ // --tokens_to_generate=32 \ // --tensor_model_parallel_size=2 \ // --prompt='This is a test.'" // sh "rm examples/nlp/language_modeling/small_gpt.nemo" // } // } stage('L2: Megatron Change Partitions') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('Reduce Num Partitions (2 to 1)'){ steps{ sh "python examples/nlp/language_modeling/megatron_change_num_partitions.py \ --model_file \ /home/TestData/nlp/megatron_gpt/TP2/megatron_gpt_tp2.nemo \ --target_file \ /home/TestData/nlp/megatron_gpt/TP2/test-reduce.nemo \ --tensor_model_parallel_size \ 2 \ --target_tensor_model_parallel_size \ 1" sh "rm /home/TestData/nlp/megatron_gpt/TP2/test-reduce.nemo" } } stage('Increase Num Partitions (2 to 4)'){ steps{ sh "python examples/nlp/language_modeling/megatron_change_num_partitions.py \ --model_file \ /home/TestData/nlp/megatron_gpt/TP2/megatron_gpt_tp2.nemo \ --target_file \ /home/TestData/nlp/megatron_gpt/TP2/test-increase.nemo \ --tensor_model_parallel_size \ 2 \ --target_tensor_model_parallel_size \ 4" sh "rm /home/TestData/nlp/megatron_gpt/TP2/test-increase.nemo" } } } } stage('L2: Megatron T5 Pretraining and Resume Training TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.masked_softmax_fusion=False \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.position_embedding_type=relative \ model.decoder.num_layers=2 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='fast-swiglu' \ model.decoder.masked_softmax_fusion=False \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='pre_ln' \ model.decoder.transformer_block_type='pre_ln' \ model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \ model.data.data_impl=text_mmap \ +model.data.data_impl_kwargs.newline_int=10 \ +model.data.data_impl_kwargs.header_lines=0 \ +model.data.data_impl_kwargs.workers=null \ +model.data.data_impl_kwargs.sort_dataset_paths=False \ model.share_token_embeddings=False \ model.share_decoder_tokens_head_embeddings=False" sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ exp_manager.resume_if_exists=True \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.masked_softmax_fusion=False \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.position_embedding_type=relative \ model.decoder.num_layers=2 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='fast-swiglu' \ model.decoder.masked_softmax_fusion=False \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='pre_ln' \ model.decoder.transformer_block_type='pre_ln' \ model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \ model.data.data_impl=text_mmap \ +model.data.data_impl_kwargs.newline_int=10 \ +model.data.data_impl_kwargs.header_lines=0 \ +model.data.data_impl_kwargs.workers=null \ +model.data.data_impl_kwargs.sort_dataset_paths=False \ model.share_token_embeddings=False \ model.share_decoder_tokens_head_embeddings=False" sh "rm -rf examples/nlp/language_modeling/t5_pretrain_results" sh "rm -rf examples/nlp/language_modeling/t5_index_mappings" } } stage('L2: Megatron T5 with ALiBi Pretraining and Resume Training TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.masked_softmax_fusion=False \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.position_embedding_type=alibi \ model.decoder.num_layers=2 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='swiglu' \ model.decoder.masked_softmax_fusion=False \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='pre_ln' \ model.decoder.transformer_block_type='pre_ln' \ model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \ model.data.data_impl=text_mmap \ +model.data.data_impl_kwargs.newline_int=10 \ +model.data.data_impl_kwargs.header_lines=0 \ +model.data.data_impl_kwargs.workers=null \ +model.data.data_impl_kwargs.sort_dataset_paths=False \ model.share_token_embeddings=False \ model.share_decoder_tokens_head_embeddings=False" sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ exp_manager.resume_if_exists=True \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.masked_softmax_fusion=False \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.position_embedding_type=alibi \ model.decoder.num_layers=2 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='swiglu' \ model.decoder.masked_softmax_fusion=False \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='pre_ln' \ model.decoder.transformer_block_type='pre_ln' \ model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \ model.data.data_impl=text_mmap \ +model.data.data_impl_kwargs.newline_int=10 \ +model.data.data_impl_kwargs.header_lines=0 \ +model.data.data_impl_kwargs.workers=null \ +model.data.data_impl_kwargs.sort_dataset_paths=False \ model.share_token_embeddings=False \ model.share_decoder_tokens_head_embeddings=False" sh "rm -rf examples/nlp/language_modeling/t5_pretrain_results" sh "rm -rf examples/nlp/language_modeling/t5_index_mappings" } } stage('L2: Megatron T5 Pretraining and Resume Training PP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ model.pipeline_model_parallel_size=2 \ model.pipeline_model_parallel_split_rank=1 \ model.seq_length=256 \ model.encoder.num_layers=4 \ model.decoder.num_layers=1 \ model.encoder.hidden_size=64 \ model.decoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.decoder.num_attention_heads=8 \ model.decoder.ffn_hidden_size=2048 \ model.encoder.activation='gelu' \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='pre_ln' \ model.decoder.transformer_block_type='post_ln' \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings" sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ exp_manager.resume_if_exists=True \ model.pipeline_model_parallel_size=2 \ model.pipeline_model_parallel_split_rank=1 \ model.seq_length=256 \ model.encoder.num_layers=4 \ model.decoder.num_layers=1 \ model.encoder.hidden_size=64 \ model.decoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.decoder.num_attention_heads=8 \ model.decoder.ffn_hidden_size=2048 \ model.encoder.activation='gelu' \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='pre_ln' \ model.decoder.transformer_block_type='post_ln' \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings" sh "rm -rf examples/nlp/language_modeling/t5_pretrain_results" sh "rm -rf examples/nlp/language_modeling/t5_index_mappings" } } stage('L2: Megatron T5 w/ Mixture of Expert Pretraining') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ model.pipeline_model_parallel_split_rank=1 \ model.seq_length=256 \ model.encoder.num_layers=4 \ model.decoder.num_layers=1 \ model.encoder.num_moe_experts=4 \ model.decoder.num_moe_experts=4 \ model.encoder.moe_frequency=3 \ model.decoder.moe_frequency=1 \ model.encoder.hidden_size=64 \ model.decoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.decoder.num_attention_heads=8 \ model.decoder.ffn_hidden_size=2048 \ model.encoder.activation='gelu' \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='pre_ln' \ model.decoder.transformer_block_type='post_ln' \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings" sh "rm -rf examples/nlp/language_modeling/t5_pretrain_results" sh "rm -rf examples/nlp/language_modeling/t5_index_mappings" } } stage('L2: Megatron T5 Prompt Learning TP1 PP1') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('T5 Prompt Learning TP=1 PP=1') { steps { sh "python examples/nlp/language_modeling/megatron_t5_prompt_learning.py \ --config-name=megatron_t5_prompt_learning \ name='/home/TestData/nlp/prompt_learning/t5_p_tuning_test' \ trainer.devices=1 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m-refactor.nemo' \ model.existing_tasks=[] \ model.new_tasks=['squad'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ model.global_batch_size=4 \ model.micro_batch_size=4" sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test" sh "python examples/nlp/language_modeling/megatron_t5_prompt_learning_eval.py \ virtual_prompt_model_file='/home/TestData/nlp/prompt_learning/t5_p_tuning_test.nemo' \ language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m-refactor.nemo' \ data.test_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ pred_file_path='/home/TestData/nlp/prompt_learning/t5_p_tuning_test_preds.txt' \ data.global_batch_size=4 \ data.micro_batch_size=4" sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test.nemo" sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test_preds.txt" } } } } stage('L2: Megatron T5 Prompt Learning TP2 PP1') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel{ stage('T5 Prompt Learning TP=2 PP=1') { steps { sh "python examples/nlp/language_modeling/megatron_t5_prompt_learning.py \ --config-name=megatron_t5_prompt_learning \ name='/home/TestData/nlp/prompt_learning/t5_p_tuning_test_tp2' \ trainer.devices=2 \ trainer.max_steps=1 \ trainer.val_check_interval=1 \ trainer.max_epochs=null \ model.data.num_workers=1 \ model.tensor_model_parallel_size=2 \ model.language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo' \ model.existing_tasks=[] \ model.new_tasks=['squad'] \ model.data.train_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ model.data.validation_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ model.global_batch_size=8 \ model.micro_batch_size=8" sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test_tp2" sh "python examples/nlp/language_modeling/megatron_t5_prompt_learning_eval.py \ virtual_prompt_model_file='/home/TestData/nlp/prompt_learning/t5_p_tuning_test_tp2.nemo' \ language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo' \ data.test_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ pred_file_path='/home/TestData/nlp/prompt_learning/t5_p_tuning_test_tp2_preds.txt' \ tensor_model_parallel_size=2 \ trainer.devices=2 \ data.global_batch_size=8 \ data.micro_batch_size=8" sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test_tp2.nemo" sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test_tp2_preds.txt" } } } } // TODO: add when https://github.com/NVIDIA/apex/pull/1596 is merged // stage('L2: Megatron T5 Prompt Learning TP1 PP2') { // when { // anyOf { // branch 'r1.17.0' // changeRequest target: 'r1.17.0' // } // } // failFast true // parallel{ // stage('T5 Prompt Learning TP=1 PP=2') { // steps { // sh "python examples/nlp/language_modeling/megatron_t5_prompt_learning.py \ // --config-name=megatron_t5_prompt_learning \ // name='/home/TestData/nlp/prompt_learning/t5_p_tuning_test_pp2' \ // trainer.devices=2 \ // trainer.max_steps=1 \ // trainer.val_check_interval=1 \ // trainer.max_epochs=null \ // model.data.num_workers=1 \ // model.pipeline_model_parallel_size=2 \ // model.language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp1_pp2.nemo' \ // model.existing_tasks=[] \ // model.new_tasks=['squad'] \ // model.data.train_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ // model.data.validation_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ // model.global_batch_size=8 \ // model.micro_batch_size=8" // sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test_pp2" // sh "python examples/nlp/language_modeling/megatron_t5_prompt_learning_eval.py \ // virtual_prompt_model_file='/home/TestData/nlp/prompt_learning/t5_p_tuning_test_pp2.nemo' \ // language_model_path='/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp1_pp2.nemo' \ // data.test_ds=['/home/TestData/nlp/prompt_learning/squad_CI_test.jsonl'] \ // pred_file_path='/home/TestData/nlp/prompt_learning/t5_p_tuning_test_pp2_preds.txt' \ // tensor_model_parallel_size=2 \ // trainer.devices=2 \ // data.global_batch_size=8 \ // data.micro_batch_size=8" // sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test_pp2.nemo" // sh "rm -rf /home/TestData/nlp/prompt_learning/t5_p_tuning_test_pp2_preds.txt" // } // } // } // } stage('L2: Megatron UL2 Pretraining and Resume Training TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py -cn megatron_ul2_config \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='normformer' \ model.encoder.headscale=True \ model.decoder.num_layers=4 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='geglu' \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.decoder.transformer_block_type='normformer' \ model.decoder.headscale=False \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings" sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \ exp_manager.resume_if_exists=True \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='swiglu' \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.encoder.transformer_block_type='normformer' \ model.encoder.headscale=True \ model.decoder.num_layers=4 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='geglu' \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.decoder.transformer_block_type='normformer' \ model.decoder.headscale=False \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \ model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings" sh "rm -rf examples/nlp/language_modeling/t5_pretrain_results" sh "rm -rf examples/nlp/language_modeling/t5_index_mappings" } } stage('L2: Megatron T5 Eval') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps{ sh "python examples/nlp/language_modeling/megatron_t5_eval.py \ --model_file \ /home/TestData/nlp/megatron_t5/8m/megatron_t5_8m-refactor.nemo \ --prompt \ 'How do I fix my GPU memory issue? I am seeing out of memory.' \ --tensor_model_parallel_size 1" } } stage('L2: Megatron BART Pretraining and Resume Training, TP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_bart_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=2 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=3 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='reglu' \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.decoder.num_layers=4 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='reglu' \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.data.data_prefix='{train:[1.0,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document],test:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document], validation:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]}'" sh "python examples/nlp/language_modeling/megatron_bart_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=2 \ trainer.limit_val_batches=1 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=6 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \ exp_manager.resume_if_exists=True \ model.tensor_model_parallel_size=2 \ model.seq_length=128 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='reglu' \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.decoder.num_layers=4 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='reglu' \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.data.data_prefix='{train:[1.0,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document],test:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document], validation:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]}'" sh "rm -rf examples/nlp/language_modeling/bart_pretrain_results" } } stage('L2: Megatron BART Pretraining and Resume Training, PP=2') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh "python examples/nlp/language_modeling/megatron_bart_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \ model.pipeline_model_parallel_size=2 \ model.pipeline_model_parallel_split_rank=1 \ model.seq_length=256 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='geglu' \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.decoder.num_layers=4 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='geglu' \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.data.respect_document_boundaries=False \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]" sh "python examples/nlp/language_modeling/megatron_bart_pretraining.py \ trainer.devices=2 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=10 \ trainer.limit_val_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=10 \ trainer.precision=16 \ trainer.gradient_clip_val=1.0 \ exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \ exp_manager.resume_if_exists=True \ model.pipeline_model_parallel_size=2 \ model.pipeline_model_parallel_split_rank=1 \ model.seq_length=256 \ model.encoder.num_layers=4 \ model.encoder.hidden_size=64 \ model.encoder.num_attention_heads=8 \ model.encoder.activation='geglu' \ model.encoder.bias_activation_fusion=False \ model.encoder.activations_checkpoint_method='block' \ model.encoder.activations_checkpoint_num_layers=1 \ model.decoder.num_layers=4 \ model.decoder.hidden_size=64 \ model.decoder.num_attention_heads=8 \ model.decoder.activation='geglu' \ model.decoder.bias_activation_fusion=False \ model.decoder.activations_checkpoint_method='block' \ model.decoder.activations_checkpoint_num_layers=1 \ model.data.respect_document_boundaries=False \ model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]" sh "rm -rf examples/nlp/language_modeling/bart_pretrain_results" } } stage('L2: Megatron T5 GLUE/XNLI Finetuning') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true parallel { // TODO(Oktai15): update it in 1.8.0 version stage('T5 GLUE RTE') { steps { sh "python examples/nlp/language_modeling/megatron_t5_seq2seq_finetune.py \ trainer.devices=1 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=1 \ +trainer.limit_val_batches=2 \ +trainer.limit_test_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=2 \ trainer.precision=16 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_glue_results \ model.restore_from_path=/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m-refactor.nemo \ model.pipeline_model_parallel_size=1 \ model.pipeline_model_parallel_split_rank=0 \ model.data.train_ds.task_name=rte \ model.data.train_ds.global_batch_size=4 \ model.data.train_ds.micro_batch_size=2 \ model.data.validation_ds.global_batch_size=2 \ model.data.validation_ds.micro_batch_size=2 \ model.data.train_ds.file_path=/home/TestData/nlp/megatron_t5/data/train_ci.tsv \ model.data.validation_ds.task_name=rte \ model.data.validation_ds.file_path=/home/TestData/nlp/megatron_t5/data/dev_ci.tsv \ " sh "rm -rf examples/nlp/language_modeling/t5_glue_results" } } stage('T5 GLUE XNLI') { steps { sh "python examples/nlp/language_modeling/megatron_t5_seq2seq_finetune.py \ -cn megatron_t5_config_finetune_glue_xnli \ trainer.devices=1 \ trainer.accelerator=gpu \ trainer.log_every_n_steps=1 \ trainer.val_check_interval=1 \ +trainer.limit_val_batches=2 \ +trainer.limit_test_batches=2 \ trainer.accumulate_grad_batches=1 \ trainer.max_steps=2 \ trainer.precision=16 \ exp_manager.exp_dir=examples/nlp/language_modeling/t5_xnli_results \ model.restore_from_path=/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m-refactor.nemo \ model.pipeline_model_parallel_size=1 \ model.pipeline_model_parallel_split_rank=0 \ model.data.train_ds.global_batch_size=4 \ model.data.train_ds.micro_batch_size=2 \ model.data.validation_ds.global_batch_size=2 \ model.data.validation_ds.micro_batch_size=2 \ model.data.test_ds.global_batch_size=2 \ model.data.test_ds.micro_batch_size=2 \ model.data.train_ds.task_name=rte \ model.data.train_ds.file_path=/home/TestData/nlp/megatron_t5/data/train_ci.tsv \ model.data.validation_ds.task_name=xnli \ model.data.validation_ds.file_path=/home/TestData/nlp/megatron_t5/data/xnli_dev_ci.tsv \ model.data.test_ds.task_name=xnli \ model.data.test_ds.file_path=/home/TestData/nlp/megatron_t5/data/xnli_dev_ci.tsv \ " sh "rm -rf examples/nlp/language_modeling/t5_xnli_results" } } } } stage('L2: TTS Fast dev runs 1') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } parallel { stage('Tacotron 2') { steps { sh 'python examples/tts/tacotron2.py \ train_dataset=/home/TestData/an4_dataset/an4_train.json \ validation_datasets=/home/TestData/an4_dataset/an4_val.json \ trainer.devices=[0] \ trainer.accelerator="gpu" \ +trainer.limit_train_batches=1 +trainer.limit_val_batches=1 trainer.max_epochs=1 \ trainer.strategy=null \ model.decoder.decoder_rnn_dim=256 \ model.decoder.attention_rnn_dim=1024 \ model.decoder.prenet_dim=128 \ model.postnet.postnet_n_convolutions=3 \ model.train_ds.dataloader_params.batch_size=4 \ model.train_ds.dataloader_params.num_workers=0 \ model.validation_ds.dataloader_params.batch_size=4 \ model.validation_ds.dataloader_params.num_workers=0 \ ~model.text_normalizer \ ~model.text_normalizer_call_kwargs \ ~trainer.check_val_every_n_epoch \ ' } } stage('WaveGlow') { steps { sh 'python examples/tts/waveglow.py \ train_dataset=/home/TestData/an4_dataset/an4_train.json \ validation_datasets=/home/TestData/an4_dataset/an4_val.json \ trainer.devices="[0]" \ +trainer.limit_train_batches=1 +trainer.limit_val_batches=1 trainer.max_epochs=1 \ trainer.strategy=null \ model.train_ds.dataloader_params.batch_size=4 \ model.train_ds.dataloader_params.num_workers=0 \ model.validation_ds.dataloader_params.batch_size=4 \ model.validation_ds.dataloader_params.num_workers=0 \ model.waveglow.n_flows=4 \ model.waveglow.n_wn_layers=2 \ model.waveglow.n_wn_channels=32 \ ~trainer.check_val_every_n_epoch' } } stage('FastPitch') { steps { sh 'python examples/tts/fastpitch.py \ --config-name fastpitch_align_v1.05 \ train_dataset=/home/TestData/an4_dataset/an4_train.json \ validation_datasets=/home/TestData/an4_dataset/an4_val.json \ sup_data_path=/home/TestData/an4_dataset/beta_priors \ trainer.devices="[0]" \ +trainer.limit_train_batches=1 \ +trainer.limit_val_batches=1 \ trainer.max_epochs=1 \ trainer.strategy=null \ model.pitch_mean=212.35873413085938 \ model.pitch_std=68.52806091308594 \ model.train_ds.dataloader_params.batch_size=4 \ model.train_ds.dataloader_params.num_workers=0 \ model.validation_ds.dataloader_params.batch_size=4 \ model.validation_ds.dataloader_params.num_workers=0 \ model.symbols_embedding_dim=64 \ model.input_fft.d_inner=384 \ model.input_fft.n_layer=2 \ model.output_fft.d_inner=384 \ model.output_fft.n_layer=2 \ ~trainer.check_val_every_n_epoch \ ~model.text_normalizer \ ~model.text_normalizer_call_kwargs' } } stage('RADTTS') { steps { sh 'python examples/tts/radtts.py \ train_dataset=/home/TestData/an4_dataset/an4_train.json \ validation_datasets=/home/TestData/an4_dataset/an4_val.json \ sup_data_path=/home/TestData/an4_dataset/radtts_beta_priors \ trainer.devices="[0]" \ +trainer.limit_train_batches=1 \ +trainer.limit_val_batches=1 \ trainer.max_epochs=1 \ trainer.strategy=null \ model.pitch_mean=212.35873413085938 \ model.pitch_std=68.52806091308594 \ model.train_ds.dataloader_params.batch_size=4 \ model.train_ds.dataloader_params.num_workers=0 \ model.validation_ds.dataloader_params.batch_size=4 \ model.validation_ds.dataloader_params.num_workers=0 \ export_dir=/home/TestData/radtts_test \ model.optim.lr=0.0001 \ model.modelConfig.decoder_use_partial_padding=True \ ~trainer.check_val_every_n_epoch \ ~model.text_normalizer \ ~model.text_normalizer_call_kwargs' } } stage('Mixer-TTS') { steps { sh 'python examples/tts/mixer_tts.py \ train_dataset=/home/TestData/an4_dataset/an4_train.json \ validation_datasets=/home/TestData/an4_dataset/an4_val.json \ sup_data_path=/home/TestData/an4_dataset/sup_data \ trainer.devices="[0]" \ +trainer.limit_train_batches=1 \ +trainer.limit_val_batches=1 \ trainer.max_epochs=1 \ trainer.strategy=null \ model.pitch_mean=212.35873413085938 \ model.pitch_std=68.52806091308594 \ model.train_ds.dataloader_params.batch_size=4 \ model.train_ds.dataloader_params.num_workers=0 \ model.validation_ds.dataloader_params.batch_size=4 \ model.validation_ds.dataloader_params.num_workers=0 \ ~trainer.check_val_every_n_epoch \ ~model.text_normalizer \ ~model.text_normalizer_call_kwargs' } } stage('Hifigan') { steps { sh 'python examples/tts/hifigan.py \ train_dataset=/home/TestData/an4_dataset/an4_train.json \ validation_datasets=/home/TestData/an4_dataset/an4_val.json \ trainer.devices="[0]" \ +trainer.limit_train_batches=1 \ +trainer.limit_val_batches=1 \ +trainer.max_epochs=1 \ trainer.strategy=null \ model.train_ds.dataloader_params.batch_size=4 \ model.train_ds.dataloader_params.num_workers=0 \ model.validation_ds.dataloader_params.batch_size=4 \ model.validation_ds.dataloader_params.num_workers=0 \ model.generator.upsample_initial_channel=64 \ +model.debug=true \ ~trainer.check_val_every_n_epoch' } } } } stage('L??: Speech Checkpoints tests') { when { anyOf { branch 'r1.17.0' changeRequest target: 'r1.17.0' } } failFast true steps { sh 'CUDA_VISIBLE_DEVICES=0 python examples/asr/speech_to_text_eval.py \ pretrained_name=QuartzNet15x5Base-En \ dataset_manifest=/home/TestData/librispeech/librivox-dev-other.json \ batch_size=64 \ tolerance=0.1012' sh 'rm -f examples/asr/evaluation_transcripts.json' } } } post { always { sh 'chmod -R 777 .' cleanWs() } } }