File size: 6,526 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
#!/usr/bin/env python3
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Builds a .nemo file with average weights over multiple .ckpt files (assumes .ckpt files in same folder as .nemo file).
Usage example for building *-averaged.nemo for a given .nemo file:
NeMo/scripts/checkpoint_averaging/checkpoint_averaging.py my_model.nemo
Usage example for building *-averaged.nemo files for all results in sub-directories under current path:
find . -name '*.nemo' | grep -v -- "-averaged.nemo" | xargs NeMo/scripts/checkpoint_averaging/checkpoint_averaging.py
NOTE: if yout get the following error `AttributeError: Can't get attribute '???' on <module '__main__' from '???'>`
use --import_fname_list <FILE> with all files that contains missing classes.
"""
import argparse
import glob
import importlib
import os
import sys
import torch
from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning.trainer.trainer import Trainer
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector
from nemo.core import ModelPT
from nemo.utils import logging, model_utils
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'model_fname_list',
metavar='N',
type=str,
nargs='+',
help='Input .nemo files (or folders who contains them) to parse',
)
parser.add_argument(
'--import_fname_list',
type=str,
nargs='+',
default=[],
help='A list of Python file names to "from FILE import *" (Needed when some classes were defined in __main__ of a script)',
)
parser.add_argument(
'--class_path', type=str, default='', help='A path to class "module.submodule.class" (if given)',
)
args = parser.parse_args()
logging.info(
f"\n\nIMPORTANT: Use --import_fname_list for all files that contain missing classes (AttributeError: Can't get attribute '???' on <module '__main__' from '???'>)\n\n"
)
for fn in args.import_fname_list:
logging.info(f"Importing * from {fn}")
sys.path.insert(0, os.path.dirname(fn))
globals().update(importlib.import_module(os.path.splitext(os.path.basename(fn))[0]).__dict__)
device = torch.device("cpu")
trainer = Trainer(strategy=NLPDDPStrategy(), devices=1, num_nodes=1, precision=16, accelerator='gpu')
# loop over all folders with .nemo files (or .nemo files)
for model_fname_i, model_fname in enumerate(args.model_fname_list):
if not model_fname.endswith(".nemo"):
# assume model_fname is a folder which contains a .nemo file (filter .nemo files which matches with "*-averaged.nemo")
nemo_files = list(
filter(lambda fn: not fn.endswith("-averaged.nemo"), glob.glob(os.path.join(model_fname, "*.nemo")))
)
if len(nemo_files) != 1:
raise RuntimeError(f"Expected only a single .nemo files but discovered {len(nemo_files)} .nemo files")
model_fname = nemo_files[0]
model_folder_path = os.path.dirname(model_fname)
fn, fe = os.path.splitext(model_fname)
avg_model_fname = f"{fn}-averaged{fe}"
logging.info(f"\n===> [{model_fname_i+1} / {len(args.model_fname_list)}] Parsing folder {model_folder_path}\n")
# restore model from .nemo file path
model_cfg = ModelPT.restore_from(
restore_path=model_fname,
return_config=True,
save_restore_connector=NLPSaveRestoreConnector(),
trainer=trainer,
)
if args.class_path:
classpath = args.class_path
else:
classpath = model_cfg.target # original class path
OmegaConf.set_struct(model_cfg, True)
with open_dict(model_cfg):
if model_cfg.get('megatron_amp_O2', False):
model_cfg.megatron_amp_O2 = False
imported_class = model_utils.import_class_by_path(classpath)
logging.info(f"Loading model {model_fname}")
nemo_model = imported_class.restore_from(
restore_path=model_fname,
map_location=device,
save_restore_connector=NLPSaveRestoreConnector(),
trainer=trainer,
override_config_path=model_cfg,
)
# search for all checkpoints (ignore -last.ckpt)
checkpoint_paths = [
os.path.join(model_folder_path, x)
for x in os.listdir(model_folder_path)
if x.endswith('.ckpt') and not x.endswith('-last.ckpt')
]
""" < Checkpoint Averaging Logic > """
# load state dicts
n = len(checkpoint_paths)
avg_state = None
logging.info(f"Averaging {n} checkpoints ...")
for ix, path in enumerate(checkpoint_paths):
checkpoint = torch.load(path, map_location=device)
if 'state_dict' in checkpoint:
checkpoint = checkpoint['state_dict']
if ix == 0:
# Initial state
avg_state = checkpoint
logging.info(f"Initialized average state dict with checkpoint : {path}")
else:
# Accumulated state
for k in avg_state:
avg_state[k] = avg_state[k] + checkpoint[k]
logging.info(f"Updated average state dict with state from checkpoint : {path}")
for k in avg_state:
if str(avg_state[k].dtype).startswith("torch.int"):
# For int type, not averaged, but only accumulated.
# e.g. BatchNorm.num_batches_tracked
pass
else:
avg_state[k] = avg_state[k] / n
# restore merged weights into model
nemo_model.load_state_dict(avg_state, strict=True)
# Save model
logging.info(f"Saving average mdel to: {avg_model_fname}")
nemo_model.save_to(avg_model_fname)
if __name__ == '__main__':
main()
|