File size: 6,526 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Builds a .nemo file with average weights over multiple .ckpt files (assumes .ckpt files in same folder as .nemo file).

Usage example for building *-averaged.nemo for a given .nemo file:

NeMo/scripts/checkpoint_averaging/checkpoint_averaging.py my_model.nemo

Usage example for building *-averaged.nemo files for all results in sub-directories under current path:

find . -name '*.nemo' | grep -v -- "-averaged.nemo" | xargs NeMo/scripts/checkpoint_averaging/checkpoint_averaging.py


NOTE: if yout get the following error `AttributeError: Can't get attribute '???' on <module '__main__' from '???'>`
      use --import_fname_list <FILE> with all files that contains missing classes.
"""

import argparse
import glob
import importlib
import os
import sys

import torch
from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning.trainer.trainer import Trainer

from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy, NLPSaveRestoreConnector
from nemo.core import ModelPT
from nemo.utils import logging, model_utils


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'model_fname_list',
        metavar='N',
        type=str,
        nargs='+',
        help='Input .nemo files (or folders who contains them) to parse',
    )
    parser.add_argument(
        '--import_fname_list',
        type=str,
        nargs='+',
        default=[],
        help='A list of Python file names to "from FILE import *" (Needed when some classes were defined in __main__ of a script)',
    )
    parser.add_argument(
        '--class_path', type=str, default='', help='A path to class "module.submodule.class" (if given)',
    )
    args = parser.parse_args()

    logging.info(
        f"\n\nIMPORTANT: Use --import_fname_list for all files that contain missing classes (AttributeError: Can't get attribute '???' on <module '__main__' from '???'>)\n\n"
    )

    for fn in args.import_fname_list:
        logging.info(f"Importing * from {fn}")
        sys.path.insert(0, os.path.dirname(fn))
        globals().update(importlib.import_module(os.path.splitext(os.path.basename(fn))[0]).__dict__)

    device = torch.device("cpu")

    trainer = Trainer(strategy=NLPDDPStrategy(), devices=1, num_nodes=1, precision=16, accelerator='gpu')
    # loop over all folders with .nemo files (or .nemo files)
    for model_fname_i, model_fname in enumerate(args.model_fname_list):
        if not model_fname.endswith(".nemo"):
            # assume model_fname is a folder which contains a .nemo file (filter .nemo files which matches with "*-averaged.nemo")
            nemo_files = list(
                filter(lambda fn: not fn.endswith("-averaged.nemo"), glob.glob(os.path.join(model_fname, "*.nemo")))
            )
            if len(nemo_files) != 1:
                raise RuntimeError(f"Expected only a single .nemo files but discovered {len(nemo_files)} .nemo files")

            model_fname = nemo_files[0]

        model_folder_path = os.path.dirname(model_fname)
        fn, fe = os.path.splitext(model_fname)
        avg_model_fname = f"{fn}-averaged{fe}"

        logging.info(f"\n===> [{model_fname_i+1} / {len(args.model_fname_list)}] Parsing folder {model_folder_path}\n")

        # restore model from .nemo file path
        model_cfg = ModelPT.restore_from(
            restore_path=model_fname,
            return_config=True,
            save_restore_connector=NLPSaveRestoreConnector(),
            trainer=trainer,
        )
        if args.class_path:
            classpath = args.class_path
        else:
            classpath = model_cfg.target  # original class path

        OmegaConf.set_struct(model_cfg, True)
        with open_dict(model_cfg):
            if model_cfg.get('megatron_amp_O2', False):
                model_cfg.megatron_amp_O2 = False
        imported_class = model_utils.import_class_by_path(classpath)
        logging.info(f"Loading model {model_fname}")
        nemo_model = imported_class.restore_from(
            restore_path=model_fname,
            map_location=device,
            save_restore_connector=NLPSaveRestoreConnector(),
            trainer=trainer,
            override_config_path=model_cfg,
        )

        # search for all checkpoints (ignore -last.ckpt)
        checkpoint_paths = [
            os.path.join(model_folder_path, x)
            for x in os.listdir(model_folder_path)
            if x.endswith('.ckpt') and not x.endswith('-last.ckpt')
        ]
        """ < Checkpoint Averaging Logic > """
        # load state dicts
        n = len(checkpoint_paths)
        avg_state = None

        logging.info(f"Averaging {n} checkpoints ...")

        for ix, path in enumerate(checkpoint_paths):
            checkpoint = torch.load(path, map_location=device)
            if 'state_dict' in checkpoint:
                checkpoint = checkpoint['state_dict']

            if ix == 0:
                # Initial state
                avg_state = checkpoint

                logging.info(f"Initialized average state dict with checkpoint : {path}")
            else:
                # Accumulated state
                for k in avg_state:
                    avg_state[k] = avg_state[k] + checkpoint[k]

                logging.info(f"Updated average state dict with state from checkpoint : {path}")

        for k in avg_state:
            if str(avg_state[k].dtype).startswith("torch.int"):
                # For int type, not averaged, but only accumulated.
                # e.g. BatchNorm.num_batches_tracked
                pass
            else:
                avg_state[k] = avg_state[k] / n

        # restore merged weights into model
        nemo_model.load_state_dict(avg_state, strict=True)
        # Save model
        logging.info(f"Saving average mdel to: {avg_model_fname}")
        nemo_model.save_to(avg_model_fname)


if __name__ == '__main__':
    main()