File size: 17,521 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

|status| |documentation| |codeql| |license| |pypi| |pyversion| |downloads| |black|

.. |status| image:: http://www.repostatus.org/badges/latest/active.svg
  :target: http://www.repostatus.org/#active
  :alt: Project Status: Active – The project has reached a stable, usable state and is being actively developed.

.. |documentation| image:: https://readthedocs.com/projects/nvidia-nemo/badge/?version=main
  :alt: Documentation
  :target: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/

.. |license| image:: https://img.shields.io/badge/License-Apache%202.0-brightgreen.svg
  :target: https://github.com/NVIDIA/NeMo/blob/master/LICENSE
  :alt: NeMo core license and license for collections in this repo

.. |pypi| image:: https://badge.fury.io/py/nemo-toolkit.svg
  :target: https://badge.fury.io/py/nemo-toolkit
  :alt: Release version

.. |pyversion| image:: https://img.shields.io/pypi/pyversions/nemo-toolkit.svg
  :target: https://badge.fury.io/py/nemo-toolkit
  :alt: Python version

.. |downloads| image:: https://static.pepy.tech/personalized-badge/nemo-toolkit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=downloads
  :target: https://pepy.tech/project/nemo-toolkit
  :alt: PyPi total downloads

.. |codeql| image:: https://github.com/nvidia/nemo/actions/workflows/codeql.yml/badge.svg?branch=main&event=push
  :target: https://github.com/nvidia/nemo/actions/workflows/codeql.yml
  :alt: CodeQL

.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
  :target: https://github.com/psf/black
  :alt: Code style: black

.. _main-readme:

**NVIDIA NeMo**
===============

Introduction
------------

NVIDIA NeMo is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), 
text-to-speech synthesis (TTS), large language models (LLMs), and 
natural language processing (NLP).
The primary objective of NeMo is to help researchers from industry and academia to reuse prior work (code and pretrained models) 
and make it easier to create new `conversational AI models <https://developer.nvidia.com/conversational-ai#started>`_.

All NeMo models are trained with `Lightning <https://github.com/Lightning-AI/lightning>`_ and 
training is automatically scalable to 1000s of GPUs. 
Additionally, NeMo Megatron LLM models can be trained up to 1 trillion parameters using tensor and pipeline model parallelism.
NeMo models can be optimized for inference and deployed for production use-cases with `NVIDIA Riva <https://developer.nvidia.com/riva>`_.

Getting started with NeMo is simple.
State of the Art pretrained NeMo models are freely available on `HuggingFace Hub <https://huggingface.co/models?library=nemo&sort=downloads&search=nvidia>`_ and
`NVIDIA NGC <https://catalog.ngc.nvidia.com/models?query=nemo&orderBy=weightPopularDESC>`_.
These models can be used to transcribe audio, synthesize speech, or translate text in just a few lines of code.

We have extensive `tutorials <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/tutorials.html>`_ that 
can all be run on `Google Colab <https://colab.research.google.com>`_.

For advanced users that want to train NeMo models from scratch or finetune existing NeMo models 
we have a full suite of `example scripts <https://github.com/NVIDIA/NeMo/tree/main/examples>`_ that support multi-GPU/multi-node training.

For scaling NeMo LLM training on Slurm clusters or public clouds, please see the `NVIDIA NeMo Megatron Launcher <https://github.com/NVIDIA/NeMo-Megatron-Launcher>`_.
The NM launcher has extensive recipes, scripts, utilities, and documentation for training NeMo LLMs and also has an `Autoconfigurator <https://github.com/NVIDIA/NeMo-Megatron-Launcher#53-using-autoconfigurator-to-find-the-optimal-configuration>`_ 
which can be used to find the optimal model parallel configuration for training on a specific cluster.

Also see our `introductory video <https://www.youtube.com/embed/wBgpMf_KQVw>`_ for a high level overview of NeMo.

Key Features
------------

* Speech processing
    * `HuggingFace Space for Audio Transcription (File, Microphone and YouTube) <https://huggingface.co/spaces/smajumdar/nemo_multilingual_language_id>`_
    * `Automatic Speech Recognition (ASR) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/intro.html>`_
        * Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC, FastConformer-CTC, FastConformer-Transducer...
        * Supports CTC and Transducer/RNNT losses/decoders
            * NeMo Original `Multi-blank Transducers <https://arxiv.org/abs/2211.03541>`_
        * Beam Search decoding
        * `Language Modelling for ASR <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html>`_: N-gram LM in fusion with Beam Search decoding, Neural Rescoring with Transformer
        * Streaming and Buffered ASR (CTC/Transducer) - `Chunked Inference Examples <https://github.com/NVIDIA/NeMo/tree/stable/examples/asr/asr_chunked_inference>`_
        * `Support of long audios for Conformer with memory efficient local attention <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/results.html#inference-on-long-audio>`_
    * `Speech Classification, Speech Command Recognition and Language Identification <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/intro.html>`_: MatchboxNet (Command Recognition), AmberNet (LangID)
    * `Voice activity Detection (VAD) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speech_classification/models.html#marblenet-vad>`_: MarbleNet
        * ASR with VAD Inference - `Example <https://github.com/NVIDIA/NeMo/tree/stable/examples/asr/asr_vad>`_
    * `Speaker Recognition <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_recognition/intro.html>`_: TitaNet, ECAPA_TDNN, SpeakerNet
    * `Speaker Diarization <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_diarization/intro.html>`_
        * Clustering Diarizer: TitaNet, ECAPA_TDNN, SpeakerNet
        * Neural Diarizer: MSDD (Multi-scale Diarization Decoder)
    * `Speech Intent Detection and Slot Filling <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_intent_slot/intro.html>`_: Conformer-Transformer
    * `Pretrained models on different languages. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_asr>`_: English, Spanish, German, Russian, Chinese, French, Italian, Polish, ...
    * `NGC collection of pre-trained speech processing models. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_asr>`_
* Natural Language Processing
    * `NeMo Megatron pre-training of Large Language Models <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html>`_
    * `Neural Machine Translation (NMT) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/machine_translation/machine_translation.html>`_
    * `Punctuation and Capitalization <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/punctuation_and_capitalization.html>`_
    * `Token classification (named entity recognition) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/token_classification.html>`_
    * `Text classification <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/text_classification.html>`_
    * `Joint Intent and Slot Classification <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/joint_intent_slot.html>`_    
    * `Question answering <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/question_answering.html>`_
    * `GLUE benchmark <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/glue_benchmark.html>`_
    * `Information retrieval <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/information_retrieval.html>`_
    * `Entity Linking <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/entity_linking.html>`_
    * `Dialogue State Tracking <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/sgd_qa.html>`_   
    * `Prompt Learning <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/nemo_megatron/prompt_learning.html>`_
    * `NGC collection of pre-trained NLP models. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_nlp>`_
    * `Synthetic Tabular Data Generation <https://developer.nvidia.com/blog/generating-synthetic-data-with-transformers-a-solution-for-enterprise-data-challenges/>`_
* `Speech synthesis (TTS) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/tts/intro.html#>`_
    * Spectrogram generation: Tacotron2, GlowTTS, TalkNet, FastPitch, FastSpeech2, Mixer-TTS, Mixer-TTS-X
    * Vocoders: WaveGlow, SqueezeWave, UniGlow, MelGAN, HiFiGAN, UnivNet
    * End-to-end speech generation: FastPitch_HifiGan_E2E, FastSpeech2_HifiGan_E2E, VITS
    * `NGC collection of pre-trained TTS models. <https://ngc.nvidia.com/catalog/collections/nvidia:nemo_tts>`_
* `Tools <https://github.com/NVIDIA/NeMo/tree/stable/tools>`_
    * `Text Processing (text normalization and inverse text normalization) <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/text_normalization/intro.html>`_
    * `CTC-Segmentation tool <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/tools/ctc_segmentation.html>`_
    * `Speech Data Explorer <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/tools/speech_data_explorer.html>`_: a dash-based tool for interactive exploration of ASR/TTS datasets


Built for speed, NeMo can utilize NVIDIA's Tensor Cores and scale out training to multiple GPUs and multiple nodes.

Requirements
------------

1) Python 3.8 or above
2) Pytorch 1.10.0 or above
3) NVIDIA GPU for training

Documentation
-------------

.. |main| image:: https://readthedocs.com/projects/nvidia-nemo/badge/?version=main
  :alt: Documentation Status
  :scale: 100%
  :target: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/

.. |stable| image:: https://readthedocs.com/projects/nvidia-nemo/badge/?version=stable
  :alt: Documentation Status
  :scale: 100%
  :target:  https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/

+---------+-------------+------------------------------------------------------------------------------------------------------------------------------------------+
| Version | Status      | Description                                                                                                                              |
+=========+=============+==========================================================================================================================================+
| Latest  | |main|      | `Documentation of the latest (i.e. main) branch. <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/>`_                  |
+---------+-------------+------------------------------------------------------------------------------------------------------------------------------------------+
| Stable  | |stable|    | `Documentation of the stable (i.e. most recent release) branch. <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/>`_ |
+---------+-------------+------------------------------------------------------------------------------------------------------------------------------------------+

Tutorials
---------
A great way to start with NeMo is by checking `one of our tutorials <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/tutorials.html>`_.

Getting help with NeMo
----------------------
FAQ can be found on NeMo's `Discussions board <https://github.com/NVIDIA/NeMo/discussions>`_. You are welcome to ask questions or start discussions there.


Installation
------------

Conda
~~~~~

We recommend installing NeMo in a fresh Conda environment.

.. code-block:: bash

    conda create --name nemo python==3.8.10
    conda activate nemo

Install PyTorch using their `configurator <https://pytorch.org/get-started/locally/>`_. 

.. code-block:: bash

    conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

The command used to install PyTorch may depend on your system. Please use the configurator linked above to find the right command for your system.

Pip
~~~
Use this installation mode if you want the latest released version.

.. code-block:: bash

    apt-get update && apt-get install -y libsndfile1 ffmpeg
    pip install Cython
    pip install nemo_toolkit['all']

Depending on the shell used, you may need to use ``"nemo_toolkit[all]"`` instead in the above command.

Pip from source
~~~~~~~~~~~~~~~
Use this installation mode if you want the version from a particular GitHub branch (e.g main).

.. code-block:: bash

    apt-get update && apt-get install -y libsndfile1 ffmpeg
    pip install Cython
    python -m pip install git+https://github.com/NVIDIA/NeMo.git@{BRANCH}#egg=nemo_toolkit[all]


From source
~~~~~~~~~~~
Use this installation mode if you are contributing to NeMo.

.. code-block:: bash

    apt-get update && apt-get install -y libsndfile1 ffmpeg
    git clone https://github.com/NVIDIA/NeMo
    cd NeMo
    ./reinstall.sh

If you only want the toolkit without additional conda-based dependencies, you may replace ``reinstall.sh``
with ``pip install -e .`` when your PWD is the root of the NeMo repository.

RNNT
~~~~
Note that RNNT requires numba to be installed from conda.

.. code-block:: bash

  conda remove numba
  pip uninstall numba
  conda install -c conda-forge numba

NeMo Megatron
~~~~~~~~~~~~~
NeMo Megatron training requires NVIDIA Apex to be installed.
Install it manually if not using the NVIDIA PyTorch container.

.. code-block:: bash

    git clone https://github.com/NVIDIA/apex.git
    cd apex
    git checkout 03c9d80ed54c0eaa5b581bf42ceca3162f085327
    pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./

It is highly recommended to use the NVIDIA PyTorch or NeMo container if having issues installing Apex or any other dependencies. 

While installing Apex, it may raise an error if the CUDA version on your system does not match the CUDA version torch was compiled with.
This raise can be avoided by commenting it here: https://github.com/NVIDIA/apex/blob/master/setup.py#L32

cuda-nvprof is needed to install Apex. The version should match the CUDA version that you are using:

.. code-block:: bash

  conda install -c nvidia cuda-nvprof=11.8

packaging is also needed:

.. code-block:: bash
  
  pip install -y packaging


Transformer Engine
~~~~~~~~~~~~~~~~~~
NeMo Megatron GPT has been integrated with `NVIDIA Transformer Engine <https://github.com/NVIDIA/TransformerEngine>`_ 
Transformer Engine enables FP8 training on NVIDIA Hopper GPUs.
`Install <https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/installation.html>`_ it manually if not using the NVIDIA PyTorch container.

.. code-block:: bash

  pip install --upgrade git+https://github.com/NVIDIA/TransformerEngine.git@stable

It is highly recommended to use the NVIDIA PyTorch or NeMo container if having issues installing Transformer Engine or any other dependencies. 

Transformer Engine requires PyTorch to be built with CUDA 11.8.

NeMo Text Processing
~~~~~~~~~~~~~~~~~~~~
NeMo Text Processing, specifically (Inverse) Text Normalization, is now a separate repository `https://github.com/NVIDIA/NeMo-text-processing <https://github.com/NVIDIA/NeMo-text-processing>`_.

Docker containers:
~~~~~~~~~~~~~~~~~~
We release NeMo containers alongside NeMo releases. For example, NeMo ``r1.16.0`` comes with container ``nemo:23.01``, you may find more details about released containers in `releases page <https://github.com/NVIDIA/NeMo/releases>`_. 

To use built container, please run

.. code-block:: bash

    docker pull nvcr.io/nvidia/nemo:23.01

To build a nemo container with Dockerfile from a branch, please run 

.. code-block:: bash

    DOCKER_BUILDKIT=1 docker build -f Dockerfile -t nemo:latest .


If you chose to work with main branch, we recommend using NVIDIA's PyTorch container version 23.02-py3 and then installing from GitHub.

.. code-block:: bash

    docker run --gpus all -it --rm -v <nemo_github_folder>:/NeMo --shm-size=8g \
    -p 8888:8888 -p 6006:6006 --ulimit memlock=-1 --ulimit \
    stack=67108864 --device=/dev/snd nvcr.io/nvidia/pytorch:23.02-py3

Examples
--------

Many examples can be found under the `"Examples" <https://github.com/NVIDIA/NeMo/tree/stable/examples>`_ folder.


Contributing
------------

We welcome community contributions! Please refer to the  `CONTRIBUTING.md <https://github.com/NVIDIA/NeMo/blob/stable/CONTRIBUTING.md>`_ CONTRIBUTING.md for the process.

Publications
------------

We provide an ever growing list of publications that utilize the NeMo framework. Please refer to `PUBLICATIONS.md <https://github.com/NVIDIA/NeMo/tree/stable/PUBLICATIONS.md>`_. We welcome the addition of your own articles to this list !

License
-------
NeMo is under `Apache 2.0 license <https://github.com/NVIDIA/NeMo/blob/stable/LICENSE>`_.