cafbr commited on
Commit
98cbb7e
·
1 Parent(s): ae9f04f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -22,10 +22,10 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9245
26
  - name: F1
27
  type: f1
28
- value: 0.9242943165882364
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -35,9 +35,9 @@ should probably proofread and complete it, then remove this comment. -->
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
37
  It achieves the following results on the evaluation set:
38
- - Loss: 0.2139
39
- - Accuracy: 0.9245
40
- - F1: 0.9243
41
 
42
  ## Model description
43
 
@@ -57,8 +57,8 @@ More information needed
57
 
58
  The following hyperparameters were used during training:
59
  - learning_rate: 2e-05
60
- - train_batch_size: 64
61
- - eval_batch_size: 64
62
  - seed: 42
63
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
  - lr_scheduler_type: linear
@@ -68,13 +68,13 @@ The following hyperparameters were used during training:
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
- | 0.8382 | 1.0 | 250 | 0.3038 | 0.9005 | 0.8973 |
72
- | 0.2437 | 2.0 | 500 | 0.2139 | 0.9245 | 0.9243 |
73
 
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.28.1
78
- - Pytorch 2.0.0+cu117
79
- - Datasets 1.16.1
80
  - Tokenizers 0.13.3
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.938
26
  - name: F1
27
  type: f1
28
+ value: 0.9380493958812126
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
37
  It achieves the following results on the evaluation set:
38
+ - Loss: 0.1828
39
+ - Accuracy: 0.938
40
+ - F1: 0.9380
41
 
42
  ## Model description
43
 
 
57
 
58
  The following hyperparameters were used during training:
59
  - learning_rate: 2e-05
60
+ - train_batch_size: 8
61
+ - eval_batch_size: 8
62
  - seed: 42
63
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
  - lr_scheduler_type: linear
 
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
+ | 0.421 | 1.0 | 2000 | 0.2256 | 0.926 | 0.9259 |
72
+ | 0.155 | 2.0 | 4000 | 0.1828 | 0.938 | 0.9380 |
73
 
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.28.1
78
+ - Pytorch 1.11.0+cu113
79
+ - Datasets 2.11.0
80
  - Tokenizers 0.13.3