File size: 2,769 Bytes
d40322a
 
 
8fc7203
d40322a
8fc7203
 
d40322a
 
 
 
 
 
 
 
 
 
 
 
 
8fc7203
d40322a
8fc7203
 
d40322a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: c14kevincardenas/ClimBEiTv2
tags:
- knowledge_distillation
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224_alpha0.7_temp3.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224_alpha0.7_temp3.0

This model is a fine-tuned version of [c14kevincardenas/ClimBEiTv2](https://huggingface.co/c14kevincardenas/ClimBEiTv2) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb_2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6260
- Accuracy: 0.7885

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1461        | 1.0   | 90   | 1.4228          | 0.2816   |
| 1.0312        | 2.0   | 180  | 1.2250          | 0.4318   |
| 0.7723        | 3.0   | 270  | 1.0165          | 0.5652   |
| 0.5804        | 4.0   | 360  | 0.7593          | 0.7085   |
| 0.4243        | 5.0   | 450  | 0.7048          | 0.7540   |
| 0.3253        | 6.0   | 540  | 0.6931          | 0.7609   |
| 0.2822        | 7.0   | 630  | 0.6610          | 0.7638   |
| 0.229         | 8.0   | 720  | 0.6538          | 0.7787   |
| 0.212         | 9.0   | 810  | 0.6767          | 0.7688   |
| 0.1972        | 10.0  | 900  | 0.6680          | 0.7569   |
| 0.174         | 11.0  | 990  | 0.6353          | 0.7757   |
| 0.1637        | 12.0  | 1080 | 0.6389          | 0.7757   |
| 0.1558        | 13.0  | 1170 | 0.6260          | 0.7885   |
| 0.153         | 14.0  | 1260 | 0.6343          | 0.7796   |
| 0.1514        | 15.0  | 1350 | 0.6342          | 0.7767   |
| 0.1419        | 16.0  | 1440 | 0.6450          | 0.7747   |
| 0.1411        | 17.0  | 1530 | 0.6400          | 0.7826   |
| 0.1303        | 18.0  | 1620 | 0.6328          | 0.7787   |
| 0.1316        | 19.0  | 1710 | 0.6287          | 0.7866   |
| 0.1303        | 20.0  | 1800 | 0.6265          | 0.7836   |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1