--- library_name: transformers license: apache-2.0 base_model: c14kevincardenas/ClimBEiTv2 tags: - knowledge_distillation - vision - generated_from_trainer metrics: - accuracy model-index: - name: beit-base-patch16-384_alpha0.7_temp3.0 results: [] --- # beit-base-patch16-384_alpha0.7_temp3.0 This model is a fine-tuned version of [c14kevincardenas/ClimBEiTv2](https://huggingface.co/c14kevincardenas/ClimBEiTv2) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb_2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5082 - Accuracy: 0.8409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1161 | 1.0 | 90 | 1.3958 | 0.3034 | | 0.8866 | 2.0 | 180 | 0.9934 | 0.5830 | | 0.5473 | 3.0 | 270 | 0.6915 | 0.7451 | | 0.4068 | 4.0 | 360 | 0.6147 | 0.7836 | | 0.2803 | 5.0 | 450 | 0.5613 | 0.8132 | | 0.232 | 6.0 | 540 | 0.5583 | 0.8073 | | 0.2132 | 7.0 | 630 | 0.5762 | 0.8103 | | 0.1911 | 8.0 | 720 | 0.5657 | 0.8192 | | 0.1705 | 9.0 | 810 | 0.5529 | 0.8103 | | 0.1603 | 10.0 | 900 | 0.5434 | 0.8172 | | 0.1553 | 11.0 | 990 | 0.5209 | 0.8221 | | 0.1475 | 12.0 | 1080 | 0.5409 | 0.8182 | | 0.1446 | 13.0 | 1170 | 0.5163 | 0.8340 | | 0.1316 | 14.0 | 1260 | 0.5329 | 0.8251 | | 0.1317 | 15.0 | 1350 | 0.5183 | 0.8389 | | 0.1284 | 16.0 | 1440 | 0.5082 | 0.8409 | | 0.1221 | 17.0 | 1530 | 0.5179 | 0.8389 | | 0.1204 | 18.0 | 1620 | 0.5164 | 0.8370 | | 0.1192 | 19.0 | 1710 | 0.5117 | 0.8439 | | 0.1167 | 20.0 | 1800 | 0.5123 | 0.8429 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1